Skip to main content
Log in

Lignite humic acids aggregates studied by high resolution ultrasonic spectroscopy

Thermodynamic stability and molecular feature

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermodynamic stability of lignite humic acids (sodium salt) aggregates was studied by high resolution ultrasonic spectroscopy within the temperature interval from 5 to 90°C. The changes in differential ultrasonic velocity (U12) showed strong differences among humic solutions within the concentration range from 0.005 to 10 g L−1. Measurement revealed several transitions which were attributed to the weakening of humic secondary structure. Concentration around 1 g L−1 seemed to be a limit under which the change of the prevalence and importance of hydration occurred. Above this concentration the difference in U12 decreased following the temperature increase which was explained as a dominance of hydrophilic hydration. In contrast, below this concentration, the temperature dependence of U12 resulted in increasing tendency which was attributed to the prevalence of hydrophobic hydration, i.e. uncovering of apolar groups towards surrounding water. Additional experiments in which the humic sample was modified by hydrochloric acid resulted in a slight structural stabilization which lead to the conclusion that humic micelle-like subaggregates form an open-layer assemblies easily accessible for interaction with an extraneous molecule. That was partly verified by addition of propionic acid which brought about even larger reconformation of humic aggregates and exhibition of polar groups towards hydration water.

The reversible changes in humate solutions induced by elevated temperatures provided the evidence about the existence of significant physical interactions among humic molecules resulting in formation of various kinds of aggregates. The nature of aggregates, mainly the stability and conformation, strongly depends on the concentration. Evidently, the changes observed in this work cannot be simply explained as expansions or conformational changes of macromolecular coils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Piccolo, Soil Sci., 166 (2001) 810.

    Article  CAS  Google Scholar 

  2. J. A. Ferreira, O. R. Nascimento and L. Martin-Neto, Environ. Sci. Technol., 35 (2001) 761.

    Article  CAS  Google Scholar 

  3. P. Conte, A. Agretto, R. Spaccini and A. Piccolo, Environ. Pollut., 135 (2005) 515.

    Article  CAS  Google Scholar 

  4. R. von Wandruszka, Geochem. Trans., 1 (2000) 10.

    Article  Google Scholar 

  5. R. L. Wershaw, Soil Sci., 164 (1999) 803.

    Article  CAS  Google Scholar 

  6. R. R. Engebretson and R. von Wandruszka, Environ. Sci. Technol., 28 (1994) 1934.

    Article  CAS  Google Scholar 

  7. R. R. Engebretson, T. Amos and R. von Wandruszka, Environ. Sci. Technol., 30 (1996) 990.

    Article  CAS  Google Scholar 

  8. R. von Wandruszka, Soil Sci., 163 (1998) 921.

    Article  Google Scholar 

  9. R. Sutton and G. Sposito, Environ. Sci. Technol., 39 (2005) 9009.

    Article  CAS  Google Scholar 

  10. E. Tombácz, Soil Sci., 164 (1999) 814.

    Article  Google Scholar 

  11. P. Conte and A. Piccolo, Developments in Soil Science 28A, A. Violante, P. M. Huang, J. M. Bollang and L. Gianfreda, Eds, Elsevier, Amsterdam, pp 409–418.

  12. J. Kučerík, D. Šmejkalová, H. Čechlovská and M. Pekař, Org. Geochem., 38 (2007) 2098.

    Article  Google Scholar 

  13. V. Buckin, E. Kudryashov, S. Morrissey, T. Kapustina and K. Dawson, Prog. Colloid Polym. Sci., 110 (1998) 214.

    Article  CAS  Google Scholar 

  14. V. Buckin, E. Kudryashov and S. Morrissey, Int. Labmate, 27 (2002) 23.

    Google Scholar 

  15. J. Kučerík, M. Pekař and M. Klučáková, Petroleum Coal, 45 (2003) 58.

    Google Scholar 

  16. J. Kučerík, P. Conte, M. Pekař and A. Piccolo, Fresenius Environ. Bull., 7 (2003) 683.

    Google Scholar 

  17. J. Kučerík, D. Kamenáářová, D. Válková, M. Pekař and J. Kislinger, J. Therm. Anal. Cal., 84 (2006) 715.

    Article  Google Scholar 

  18. D. Válková, J. Kislinger, M. Pekař and J. Kučerík. J. Therm. Anal. Cal., 89 (2007) 957.

    Article  Google Scholar 

  19. J. Peuravuori, P. Žbánková and K. Pihlaja, Fuel Process. Technol., 87 (2006) 829.

    Article  CAS  Google Scholar 

  20. N. Fasurová, H. Čechlovská and J. Kučerík, Petroleum and Coal, 48 (2006) 39.

    Google Scholar 

  21. G. Venktaramana, E. Rajagopal and N. Manohara Murthy, J. Mol. Liquids, 123 (2006) 68.

    Article  CAS  Google Scholar 

  22. M. Klučáková and M. Pekař, Colloids Surf. A, 252 (2005) 157.

    Article  Google Scholar 

  23. A. P Sarwazyan, Annu. Rev. Biophys. Biophys. Chem., 20 (1991) 321.

    Article  Google Scholar 

  24. V. Buckin and B. O’Driscoll, Lab. Plus International, 16 (2002) 17.

    Google Scholar 

  25. E. Kurdyashov, T. Kapustina, S. Morrissey, V. Buckin and K. Dawson, J. Colloid Interface Sci., 203 (1998) 59.

    Article  Google Scholar 

  26. A. J. Rowe, Biophys. Chem., 93 (2001) 93.

    Article  CAS  Google Scholar 

  27. J. N. Israelashvili, Intermolecular and Surface Forces, Academic Press, 1993.

  28. V. Buckin, E. Kudryashov and B. O’Driscoll, Am. Lab., 28 (2002) 30.

    Google Scholar 

  29. C. Smyth, K. Dawson and V. Buckin, Progr. Colloid Polym. Sci., 112 (1999) 221.

    Article  CAS  Google Scholar 

  30. V. V. Yaminsky and E. A. Vogler, Curr. Opin. Colloid Interface Sci., 6 (2001) 342.

    Article  CAS  Google Scholar 

  31. V. Gutmann, Pure Appl. Chem., 63 (1991) 1715.

    Article  CAS  Google Scholar 

  32. N. E. Palmer and R. von Wandruszka Fresenius, J. Anal. Chem., 371 (2001) 951.

    Article  CAS  Google Scholar 

  33. R. S. Swift, Soil Sci., 164 (1999) 790.

    Article  CAS  Google Scholar 

  34. J. Peuravuori, Environ. Sci. Technol., 39 (2005) 5541.

    Article  CAS  Google Scholar 

  35. J. Peuravuori and K. Pihlaja, Environ. Sci. Technol., 38 (2004) 5958.

    Article  CAS  Google Scholar 

  36. D. Šmejkalová and A. Piccolo, Environ. Sci. Technol., 42 (2008) 699.

    Article  Google Scholar 

  37. V. Shrinivas, G. A. Rodley, K. Ravikumar, W. T. Robinson, M. M. Turnbull and D. Balasubramanian, Langmuir, 13 (1997) 3235.

    Article  Google Scholar 

  38. J. W. Steed and J. L. Atwood, Supramolecular Chemistry, Wiley, 2005.

  39. D. Balasubramanian, V. Srinivas, V. G. Gaikar and M. M. Sharma, J. Phys. Chem., 93 (1989) 3865.

    Article  CAS  Google Scholar 

  40. S. Nardi, A. Muscolo, S. Vaccaro, S. Baiano, R. Spaccini and A. Piccolo, Soil Biol. Biochem., 39 (2007) 3138.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kučerík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kučerík, J., Čechlovská, H., Bursáková, P. et al. Lignite humic acids aggregates studied by high resolution ultrasonic spectroscopy. J Therm Anal Calorim 96, 637–643 (2009). https://doi.org/10.1007/s10973-008-9391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9391-6

Keywords

Navigation