Skip to main content
Log in

Calorimetric study of activated kinetics of the nematic and smectic phase transitions in an aligned nano-colloidal liquid crystal+aerosil gel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study explores the calorimetric analysis of an aligned nano-colloidal aerosil dispersed octyl-cyanobiphenyl gel. This system was prepared by solvent dispersion method (SDM). Heating scans were performed at different heating rates from 20 to 1 K min−1 using DSC. Aligned samples follow Arrhenius behavior and showed a temperature shift in SmA-N and N-I transitions towards lower temperature. These samples show a decreased activated kinetics and an interesting relationship with their enthalpy. This behavior can be explained in terms of surface and molecular interaction between aerosil nano-particles and 8CB molecules and produced strain in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Shima, M. Okumura and T. Higuchi, Electronics and Communications in Japan, Part 2 (Electronics), 79 (1996) 73.

    Article  Google Scholar 

  2. H. Cheng and H. Gao, J. Appl. Phys., 87 (2000) 7476.

    Article  CAS  Google Scholar 

  3. C. C. Yu and H. M. Carruzzo, Phys. Rev. E, 69 (2004) 051201.

    Article  Google Scholar 

  4. N. P. da Silveira, F. E. Dolle, C. Rochas, A. Rigacci, F. V. Pereira and H. Westfahl Jr., J. Therm. Anal. Cal., 79 (2005) 579.

    Article  Google Scholar 

  5. T. Bellini, N. A. Clark, V. Degiorgio, F. Mantegazza and G. Natale, Phys. Rev. E, 57 (1998) 2996.

    Article  CAS  Google Scholar 

  6. G. S. Iannacchione, C. W. Garland, J. T. Mang and T. P. Rieker, Phys. Rev. E, 58 (1998) 5966.

    Article  CAS  Google Scholar 

  7. D. Sharma and G. S. Iannacchione, J. Chem. Phys, 126 (2007) 094503.

    Article  Google Scholar 

  8. R. L. Leheny, S. Park, R. J. Birgeneau, J. L. Gallani, C. W. Garland and G. S. Iannacchione, Phys. Rev. E, 67 (2003) 011708.

    Article  CAS  Google Scholar 

  9. T. Jin and D. Finotello, Phys. Rev. Lett., 86 (2001) 818.

    Article  CAS  Google Scholar 

  10. R. Nozaki, T. K. Bose and S. Yagihara, Phys. Rev. A, 46 (1992) 7733.

    Article  CAS  Google Scholar 

  11. D. Sharma, J. C. MacDonald and G. S. Iannacchione, J. Phys. Chem. B, 110 (2006) 16679.

    Article  CAS  Google Scholar 

  12. A. D. Bagmet and A. L. Tsykalo, J. Eng. Phys., 52 (1987) 279.

    Article  Google Scholar 

  13. F. Li, W. J. Doane and A. J. Kli, Japanese J. Appl. Phys., 45 (2006) 1714.

    Article  CAS  Google Scholar 

  14. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd Ed., Clarendon Press, Oxford, England 1993.

    Google Scholar 

  15. E. Lizuka, Inter. J. Polym. Mater., 45 (2000) 191.

    Article  CAS  Google Scholar 

  16. D. Liang, M. A. Borthwick and R. L. Leheny, J. Phys. Condens. Matter., 16 (2004) S1989.

    Article  CAS  Google Scholar 

  17. C. R. Ernst, G. M. Schneider, A. W. Rflinger and W. Weiflog, Ber. Bunsenges. Phys. Chem., 102 (1998) 1870.

    CAS  Google Scholar 

  18. D. Sharma, R. Shukla, A. Singh, A. Nagpal and A. Kumar, Adv. Mater. Opt. Electron., 10 (2000) 251.

    Article  CAS  Google Scholar 

  19. D. Sharma, S. K. Dwivedi, R. K. Shukla and A. Kumar, Mater. Manufact. Proc., 18 (2003) 93.

    Article  CAS  Google Scholar 

  20. D. Sharma, R. Shukla and A. Kumar, Thin Solid Films, 357 (1999) 214.

    Article  CAS  Google Scholar 

  21. N. Mehta, D. Sharma and A. Kumar, Physica B, 391 (2007) 108112.

    Article  Google Scholar 

  22. D. Sharma, J. C. MacDonald and G. S. Iannacchione, J. Phys. Chem. B, 110 (2006) 26160.

    Article  CAS  Google Scholar 

  23. D. Sharma and G. S. Iannacchione, J. Phys. Chem. B, 111 (Mar 2007) 1916.

    Article  CAS  Google Scholar 

  24. Degussa Corp., Silica Division, 65 Challenger Road, Ridgefield Park, NJ 07660. Technical data is given in the Degussa booklet Aerosila.

  25. H. Vogel, Phys. Z., 22 (1921) 645.

    CAS  Google Scholar 

  26. G. S. Fulcher, J. Am. Ceram. Soc., 6 (1926) 339.

    Google Scholar 

  27. D. Maximean, C. Rosu, T. Yamamoto and H. Yokoyama, Molecular Crystals Liquid Crystals, 417 (2004) 215.

    Article  Google Scholar 

  28. F. Blum, A. Padmanabhan and R. Mohebbi, Langmuir, 1 (1985) 127.

    Article  CAS  Google Scholar 

  29. A property of certain gels to become fluid when mechanically disturbed (as by shaking or stirring) then resetting after a period of time.

  30. T. Bellini, M. Buscaglia, C. Chiccoli, F. Mantegazza, P. Pasini and C. Zannoni, Phys. Rev. Lett., 85 (2000) 1008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, D. Calorimetric study of activated kinetics of the nematic and smectic phase transitions in an aligned nano-colloidal liquid crystal+aerosil gel. J Therm Anal Calorim 93, 899–906 (2008). https://doi.org/10.1007/s10973-007-8583-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8583-9

Keywords

Navigation