Skip to main content
Log in

Nanofiller effect on the glass transition of a polyurethane

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of silica nanofiller on the glass transition of a polyurethane was studied by DSC. The pristine polymer exhibits a single glass transition at about –10°C. Uniform SiO2 spheres with different average sizes and narrow size distributions were synthesized in solution by the Stöber method [1]. Both the effects of silica content within the polymer and particle size were investigated, as well as two different surface treatments. Scanning electron microscopy (SEM) clearly confirms the presence of the particles within the polymer matrix, showing uniform distribution and no agglomeration. While shifting of the glass transition has been reported by many authors, we have not seen any noticeable shift in this polymer. Surprisingly, we found no relevant effects when either increasing the filler content or changing the particle size. Different amounts of particles with average diameters of 175, 395 and 730 nm did not affect the glass transition temperature of the pristine polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W Stöber A Fink E Bohn (1968) J. Colloid Interface Sci. 26 62 Occurrence Handle10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  2. G. Janowska, T. Mikolajczyk and M. Bogun, J. Therm. Anal. Cal., OnlineFirst, DOI: 10.1007/s10973-006-7615-1.

  3. E Kontou M Niaoiunakis (2006) Polymer 47 1267 Occurrence Handle10.1016/j.polymer.2005.12.039 Occurrence Handle1:CAS:528:DC%2BD28Xht1Gjtr0%3D

    Article  CAS  Google Scholar 

  4. BJ Ash LS Schadler RW Siegel (2004) J. Polym. Sci. Part B: Polym. Phys. 42 23 Occurrence Handle10.1002/polb.20297

    Article  Google Scholar 

  5. M Preghenella A Pegonetti C Miglianesi (2005) Polymer 46 12065 Occurrence Handle10.1016/j.polymer.2005.10.098 Occurrence Handle1:CAS:528:DC%2BD2MXhtlCnsbvI

    Article  CAS  Google Scholar 

  6. Z Peng LX Kong SD Li (2005) Synth. Met. 152 25 Occurrence Handle10.1016/j.synthmet.2005.07.098 Occurrence Handle1:CAS:528:DC%2BD2MXpvVGlt7s%3D

    Article  CAS  Google Scholar 

  7. C Wu T Xu W Yang (2005) Eur. Polym. J. 41 1901 Occurrence Handle10.1016/j.eurpolymj.2005.02.031 Occurrence Handle1:CAS:528:DC%2BD2MXltlers74%3D

    Article  CAS  Google Scholar 

  8. JP He HM Li XY Wang Y Gao (2006) Eur. Polym. J. 42 1128 Occurrence Handle10.1016/j.eurpolymj.2005.11.002 Occurrence Handle1:CAS:528:DC%2BD28XjslClurY%3D

    Article  CAS  Google Scholar 

  9. S Jain H Goossens M van Duin P Lemstra (2005) Polymer 46 8805 Occurrence Handle1:CAS:528:DC%2BD2MXpsF2itr8%3D

    CAS  Google Scholar 

  10. D Fragiadakis P Pissis L Bokobza (2005) Polymer 46 6001 Occurrence Handle10.1016/j.polymer.2005.05.080 Occurrence Handle1:CAS:528:DC%2BD2MXlvV2mu78%3D

    Article  CAS  Google Scholar 

  11. GH Bogush MA Tracy CF Zukosky (1988) J. Non-Cryst. Solids 104 95 Occurrence Handle10.1016/0022-3093(88)90187-1 Occurrence Handle1:CAS:528:DyaL1cXlslOhur4%3D

    Article  CAS  Google Scholar 

  12. P Philipse A Vrij (1989) J. Colloid Interface Sci. 128 121 Occurrence Handle10.1016/0021-9797(89)90391-3 Occurrence Handle1:CAS:528:DyaL1MXhsVais78%3D

    Article  CAS  Google Scholar 

  13. JM Jethmalani HB Sunkara WT Ford (1997) Langmuir 13 3338.2

    Google Scholar 

  14. W Wang B Gu L Liang W Hamilton (2003) J. Phys. Chem. B 107 3400 Occurrence Handle10.1021/jp0221800 Occurrence Handle1:CAS:528:DC%2BD3sXitF2qtbs%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Artiaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Irún Rodríguez, J., Carreira, P., García-Diez, A. et al. Nanofiller effect on the glass transition of a polyurethane. J Therm Anal Calorim 87, 45–47 (2007). https://doi.org/10.1007/s10973-006-7805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7805-x

Keywords

Navigation