Skip to main content
Log in

Extension of the measuring range of balances

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The basic principle of comparing the sample mass with the mass of a reference body in equilibrium gives the equal-armed beam balance a unique accuracy. Main parameters characterising the suitability of the instrument are measuring range, resolution and relative sensitivity (resolution/maximum load). The historical development of the values of these parameters achieved depended strongly on the practical need in those times.

Technically unfavourable scales of the oldest Egyptian dynasties (~3000 BC) could resolve mass differences of 1 g and had a relative sensitivity of at least 10–3. More sophisticated instruments from the 18th Dynasty (~1567–1320 BC) achieved a relative sensitivity of 10–4 independent of the size of the instrument. In 350 BC Aristotle clarified the theory of the lever and at about 250 BC Archimedes used the balance for density determinations of solids. The masterpiece of a hydrological balance was Al Chazini’s 'Balance of Wisdom’ built about 1120. Its relative sensitivity was 2⋅10–5.

Real progress took place when scientists like Lavoisier (1743–1794) founded modern chemistry. At the end of the 19th century metrological balances reached a relative sensitivity of 10–9 with a maximum load of several kilogrammes. That seems to be the high end of sensitivity of the classical mechanical beam balance with knife edges. Improvements took place by electrodynamic compensation (Emich, Gast).

In 1909 Ehrenhaft and Millikan could weigh particles of 10–15 g by means of electrostatic suspension. In 1957 Sauerbrey invented the oscillating quartz crystal balance. By observing the frequency shift of oscillating carbon nanotubes or of silica nanorods, masses or mass changes in the attogram or zeptogram have been observed recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HR Jenemann (1992) Maß und Gewicht-Zeitschrift fürMetrologie 21 470

    Google Scholar 

  2. HR Jenemann (1992) Maß und Gewicht-Zeitschrift fürMetrologie 22 509

    Google Scholar 

  3. M Kochsiek M Gläser et al. (2000) Eds Comprehensive Mass Metrology Wiley-VCH Berlin

    Google Scholar 

  4. DIN/ISO, Internationales Wörterbuch der Metrologie, International Vocabulary of Basic and General Terms in Metrology Beuth, Berlin 1984.

  5. E Robens (1996) J. Thermal Anal. 47 619 Occurrence Handle1:CAS:528:DyaK28XmsVOjtb8%3D Occurrence Handle10.1007/BF01984003

    Article  CAS  Google Scholar 

  6. HR Jenemann et al. (2000) The development of the determination of mass, in Comprehensive Mass Metrology Wiley-VCH Berlin 119

    Google Scholar 

  7. W. M. F. Petrie, A Season in Egypt, London 1888.

  8. W.M. F. Petrie, Ancient Weights and Measures, London 1926.

  9. FG Skinner et al. (1967) Weights and Measures – Their ancient origines and their development in Great Britain up to AD 1855 Science Museum London

    Google Scholar 

  10. TGH James et al. (1979) An Introduction to Ancient Egypt British Museum London

    Google Scholar 

  11. C Seeber et al. (1976) Untersuchungen zur Darstellung des Totengerichts im Alten Ägypten. Münchner Ägyptologische Studien Deutscher Kunstverlag München Vol. 35

    Google Scholar 

  12. Naville, Papyrus Funéaires de la XXI Dynastie I, Paris 1912.

  13. C. H. S. Davis, The Egyptian Book of Dead, New York 1984.

  14. E Robens CH Massen JA Poulis et al. (1995) Untersuchungen an einem Modell für eine große Waage der XVIII. Ägyptischen Dynastie, in Ordo et Mensura Scripta Mercaturae St. Katharinen 130

    Google Scholar 

  15. CH Massen JA Poulis E Robens H Geskes et al. (1994) Investigation on a model for a large balance of the XVIII Egyptian dynasty, in Microbalance Techniques Multi-Science Publishing Brentwood 5

    Google Scholar 

  16. Aristoteles, Ed. Questiones mechanicae. Kleine Schriften zur Physik und Metaphysik, Ed. P. Gohlke, Paderborn 1957.

  17. Archimedes et al. (1987) The Works of Archimedes, §7. About swimming bodies Wissenschaftliche Verlagsbuchhandlung Frankfurt am Main

    Google Scholar 

  18. Archimedes, The Works of Archimedes: Dover Publications.

  19. Al-Chazini, Buch der Waage der Weisheit, Merw 1120.

  20. T. Ibel, Die Wage im Altertum und Mittelalter, Erlangen 1908.

  21. H Bauerreiß et al. (1913) Zur Geschichte des spezifischen Gewichts im Altertum und Mittelalter Universität Erlangen Erlangen

    Google Scholar 

  22. L. da Vinci, Ed. Codex atlanticus-Saggio del Codice atlantico, Ed. Aretin, Vol. fol. 249 verso-a + fol. 8 verso-b, Milano 1872.

  23. HR Jenemann et al. (1996) Das Kilogramm der Archive vom 4, Messidor des Jahres 7: Konform mit dem Gesetz vom 18, Germinal des Jahres 3? in Genauigkeit und Präzision Physikalisch-Technische Bundesanstalt Braunschweig 183

    Google Scholar 

  24. HR Jenemann (1988) Beiträge zur deutschen Volks- und Altertumskunde 91 169

    Google Scholar 

  25. WF Hemminger K-H Schönborn (1980) Thermochim. Acta 39 321 Occurrence Handle10.1016/0040-6031(80)87084-5

    Article  Google Scholar 

  26. C Eyraud P Rochas (1989) Thermochim. Acta 152 1 Occurrence Handle1:CAS:528:DyaK3cXjsl2msw%3D%3D Occurrence Handle10.1016/0040-6031(89)85368-7

    Article  CAS  Google Scholar 

  27. T Gast T Brokate E Robens et al. (2000) Vacuum Weighing, in Comprehensive Mass Metrology Wiley-VCH Weinheim 296

    Google Scholar 

  28. AW Czanderna SP Wolsky et al. (1980) Microweighing in Vacuuum and Controlled Environments Elsevier Amsterdam

    Google Scholar 

  29. HR Jenemann (1985) Robert Hooke und die frühe Geschichte der Federwaage, Ber. Wissenschaftsgeschichte 8 121

    Google Scholar 

  30. U Kilian C Weber et al. (2000) Lexikon der Physik, Vol. 4 Spektrum Akademischer Verlag Heidelberg

    Google Scholar 

  31. G Böhme E Robens et al. (1973) H. Straubel and G. Walter Determination of relative weight changes of electrostatically suspended particles in the sub-microgram range, in Progress in Vacuum Micorbalance Techniques Heydenm London 169

    Google Scholar 

  32. A Einstein (1916) Annalen der Physik 49 769 Occurrence Handle1:CAS:528:DyaC2sXjs1Ol

    CAS  Google Scholar 

  33. G Sauerbrey (1957) Phys. Verhandl. 8 193

    Google Scholar 

  34. G Sauerbrey (1959) Z. Physik 155 206 Occurrence Handle1:CAS:528:DyaG1MXoslSjtQ%3D%3D Occurrence Handle10.1007/BF01337937

    Article  CAS  Google Scholar 

  35. V. M. Mecea, J. Therm. Anal. Cal., OnlineFirst, DOI: 10.1007/s10973-006-7570-x.

  36. S Gupta G Morell BR Weiner (2004) J. Appl. Phys. Lett. 84 10 Occurrence Handle10.1063/1.1637948

    Article  Google Scholar 

  37. J Wood (2004) Materials Today 4 20

    Google Scholar 

  38. P Poncheral ZL Wang DI Ugarte WA de Heer (1999) Science 283 1513 Occurrence Handle10.1126/science.283.5407.1513

    Article  Google Scholar 

  39. B Ilic HG Craighead S Krylov W Senaratne C Ober P Neuzil (2004) J. Appl. Phys. 95 3694 Occurrence Handle1:CAS:528:DC%2BD2cXitlKrurk%3D Occurrence Handle10.1063/1.1650542

    Article  CAS  Google Scholar 

  40. R Berger J Gutmann (2005) Nanopticum 1 4

    Google Scholar 

  41. HWCh Postma I Kozinsky A Husain ML Roukes (2005) Appl. Phys. Lett. 86 223105 Occurrence Handle10.1063/1.1929098

    Article  Google Scholar 

  42. C Sealy (2004) Materials Today 6 9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Robens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robens, E., Dąbrowski, A. Extension of the measuring range of balances. J Therm Anal Calorim 86, 17–21 (2006). https://doi.org/10.1007/s10973-006-7571-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7571-9

Keywords

Navigation