Skip to main content
Log in

Stability evaluation of n-alkyl hyaluronic acid derivates by DSC and TG measurement

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal and thermooxidative behavior of sodium salt of hyaluronic acid (HA) and its n-hexyl, n-decyl, n-tetradecyl and n-hexadecyl ether derivatives having an equal degree of substitution have been studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TG). Derivatives were prepared by a substitution of H atom at the OH bound to the sixth C of N-acetyl-D-glucosamin of HA unit by n-hexyl, n-decyl, n-tetradecyl and n-hexadecyl chains. Both thermal and thermooxidative degradation of HA and derivatives resulted in multistep process. The main interest of this work was focused on processes occurring in the course of the first decomposition step. Experimental DSC data showed lower stability of derivatives and, remarkably lower heat evolution in comparison with original HA. On the other hand, TG measurement recorded lower mass loss for derivates which indicated appearance of new types of crosslinking reactions. Oxidative stability was evaluated by means of DSC that provided the induction period and the protection factor determination. Derivates showed remarkably lower stability in comparison with original HA; comparing each other, the highest oxidation stability showed n-decyl and n-tetradecyl derivates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K Meyer JW Palmer (1934) J. Biol. Chem. 107 629 Occurrence Handle1:CAS:528:DyaA2MXhs12kug%3D%3D

    CAS  Google Scholar 

  2. V. C. Hascall, in Biology of Carbohydrates, V.Ginsburg and P. Robbins (Eds), 1981, p. 1.

  3. L Roden (1980) Biochemistry of Glycoproteins and Proteoglycans Plenum New York 267

    Google Scholar 

  4. NE Larsen EA Balazs (1991) Adv. Drug Delivery Rev. 7 279 Occurrence Handle10.1016/0169-409X(91)90007-Y Occurrence Handle1:CAS:528:DyaK3MXmvVKqu7g%3D

    Article  CAS  Google Scholar 

  5. RE Fraser TC Laurent UBG Laurent (1997) J. Intern. Med. 27 242

    Google Scholar 

  6. L Lapčík Jr. J Schurz (1991) Colloid Polym. Sci. 269 633

    Google Scholar 

  7. L. Lapčík Jr., in Symposium of biomedical engineering and biotechnology, Prague 1994, p. 10.

  8. L Lapčík Jr. L Lapčík S De Smedt J Demeester P Chabreček (1998) Chem. Review 98 2663

    Google Scholar 

  9. GD Prestwich KP Vercruysse (1998) Crit. Rev. Ther. Drug Carrier Syst. 15 513

    Google Scholar 

  10. EA Balazs JL Denlinger (1989) Ciba Found Symp. 143 265 Occurrence Handle1:STN:280:By%2BD3s3gs10%3D

    CAS  Google Scholar 

  11. RN Rosier RJ O'Keefe (2000) Instr. Course Lect. 49 495 Occurrence Handle1:STN:280:DC%2BD3cvhtlKqtA%3D%3D

    CAS  Google Scholar 

  12. D Campoccia P Doherty M Radice P Brun G Abatangelo DF Williams (1998) Biomaterials 19 2101 Occurrence Handle10.1016/S0142-9612(98)00042-8 Occurrence Handle1:CAS:528:DyaK1MXktVKh

    Article  CAS  Google Scholar 

  13. KP Vercruysse DM Marecak JF Marecek GD Prestwich (1997) Bioconjug. Chem. 8 686 Occurrence Handle10.1021/bc9701095 Occurrence Handle1:CAS:528:DyaK2sXlslGmsLk%3D

    Article  CAS  Google Scholar 

  14. P Bulpitt D Aeschlimann (1999) J. Biomed. Mater. Res. 47 152 Occurrence Handle10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I Occurrence Handle1:CAS:528:DyaK1MXmtVant7w%3D

    Article  CAS  Google Scholar 

  15. Y Luo KR Kirker GD Prestwich (2000) J. Control Release 69 169 Occurrence Handle10.1016/S0168-3659(00)00300-X Occurrence Handle1:CAS:528:DC%2BD3cXmvFOrs7w%3D

    Article  CAS  Google Scholar 

  16. XZ Shu Y Liu Y Luo MC Roberts GD Prestwich (2002) Biomacromolecules 3 1304 Occurrence Handle10.1021/bm025603c Occurrence Handle1:CAS:528:DC%2BD38XntlaitrY%3D

    Article  CAS  Google Scholar 

  17. YD Park N Tirelli JA Hubbell (2003) Biomaterials 24 893 Occurrence Handle1:CAS:528:DC%2BD38Xps1Onu78%3D

    CAS  Google Scholar 

  18. A Ramamurthi I Vesely (2002) J. Biomed. Mater. Res. 60 195 Occurrence Handle10.1002/jbm.10061

    Article  Google Scholar 

  19. K Tomihata Y Ikada (1997) Biomaterials 18 189 Occurrence Handle1:CAS:528:DyaK2sXhtVansL0%3D

    CAS  Google Scholar 

  20. JR Glass KT Dickerson K Stecker JW Polarek (1996) Biomaterials 17 1101 Occurrence Handle10.1016/0142-9612(96)85911-4 Occurrence Handle1:CAS:528:DyaK28Xjtl2rs74%3D

    Article  CAS  Google Scholar 

  21. A Ramamurthi I Vesely (2003) J. Biomed. Mater. Res. 66A 317 Occurrence Handle10.1002/jbm.a.10588 Occurrence Handle1:CAS:528:DC%2BD3sXmtlyqsrc%3D

    Article  CAS  Google Scholar 

  22. K. Benešová, Structure and properties of hyaluronic acid and its derivatization. Diploma Thesis, BUT FCH Brno 1998, in Czech.

  23. P. Kmínková, Synthesis and physical-chemical characterization of alkyl (C6) derivates of hyaluronic acids, Diploma Thesis, BUT FCH Brno 1998, in Czech.

  24. L. Lapčík and M. Veselý, Chemistry Workshop 95, Prague, 1995, p 121.

  25. MA Villetti JS Crespo MS Soldi ATN Pires R Borsali V Soldi (2002) J. Therm. Anal. Cal. 67 295 Occurrence Handle10.1023/A:1013902510952 Occurrence Handle1:CAS:528:DC%2BD38Xit1Cmsr4%3D

    Article  CAS  Google Scholar 

  26. P Šimon A Kučma (1999) J. Therm. Anal. Cal. 56 1107

    Google Scholar 

  27. J March (1985) Advanced Organic Chemistry. Reactions, Mechanisms and Structure John Wiley New York

    Google Scholar 

  28. RA Johnstone ME Rose (1979) Tetrahedron 35 2169 Occurrence Handle10.1016/0040-4020(79)87035-0 Occurrence Handle1:CAS:528:DyaL3cXksVKitrg%3D

    Article  CAS  Google Scholar 

  29. P Šimon M Veverka J Okuliar (2004) J. Int. Pharm. 270 21

    Google Scholar 

  30. JE Sealey G Samaranayake JG Todd WG Glasser (1996) J. Polym. Sci. Part B, Polym. Phys. 34 1613 Occurrence Handle10.1002/(SICI)1099-0488(19960715)34:9<1613::AID-POLB10>3.0.CO;2-A Occurrence Handle1:CAS:528:DyaK28XjslKgtrw%3D

    Article  CAS  Google Scholar 

  31. Y Tokita K Oshima A Okamoto (1997) Polym. Degrad. Stab. 55 159 Occurrence Handle1:CAS:528:DyaK2sXht1ehtL4%3D

    CAS  Google Scholar 

  32. F Heatley JE Scott (1988) Biochem. J. 254 489 Occurrence Handle1:CAS:528:DyaL1cXlsVCqsL4%3D

    CAS  Google Scholar 

  33. JE Scott C Cummings A Brass Y Chen (1991) Biochem. J. 274 699 Occurrence Handle1:CAS:528:DyaK3MXhvVSktrk%3D

    CAS  Google Scholar 

  34. P Jandura B Riedl BV Kokta (2000) Polym. Degrad. Stab. 70 387 Occurrence Handle1:CAS:528:DC%2BD3cXosV2mtb8%3D

    CAS  Google Scholar 

  35. BW Hopkins GS Tschumper (2004) J. Phys. Chem. Part A 108 2941 Occurrence Handle1:CAS:528:DC%2BD2cXhtVyltL4%3D

    CAS  Google Scholar 

  36. RP Schwarzenbach PM Gschwend DM Imboden (1993) Environmental Organic Chemistry Wiley New York

    Google Scholar 

  37. P Buurman B van Lagen A Piccolo (2002) Org. Geochem. 33 367 Occurrence Handle10.1016/S0146-6380(01)00167-X Occurrence Handle1:CAS:528:DC%2BD38XhtlCqu7c%3D

    Article  CAS  Google Scholar 

  38. J Kučerík J Kovář M Pekař (2004) J. Therm. Anal. Cal. 76 55

    Google Scholar 

  39. P Šimon (2004) J. Therm. Anal. Cal. 76 123

    Google Scholar 

  40. Z Cibulková P Šimon P Lehocký J Balko (2005) Polym. Degrad. Stab. 87 479

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kučerík J .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benešová, K., Pekař, M., Lapčík, L. et al. Stability evaluation of n-alkyl hyaluronic acid derivates by DSC and TG measurement . J Therm Anal Calorim 83, 341–348 (2006). https://doi.org/10.1007/s10973-005-6870-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-6870-x

Keywords

Navigation