Skip to main content
Log in

Synthesis, spectral and thermal characterization of 6-hydroxymethyl pyridine-2-carboxylic acid methyl ester and its complexes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Summary

New pincer ligand, 6-hydroxymethylpyridine-2-carboxylic acid methyl ester, HL, and its bipositive, tripositive and uranyl metal complexes have been synthesized and characterized by elemental and thermal analyses, IR, diffuse reflectance and 1H NMR spectra, molar conductance and magnetic moment measurements. The downfield shift of the aliphatic OH signal (from 3.87 vs. 2.96 ppm in the ligand) upon complexation indicates the coordination by protonated aliphatic OH group. Zn(II) and UO2(II) complexes are found to be diamagnetic as expected. The low molar conductance values indicate that Ni(II) and Zn(II) complexes are non electrolytes; Fe(II), Co(II), Cu(II) and UO2(II) complexes are 1:2  electrolytes while Fe(III) complex is a 1:3 electrolyte. The general compositions of the complexes are found to be [M(HL)X2nH2O where M=Ni(II) (X=Cl, n=1) and Zn(II) (X=Br, n=0); and [M(HL)2]Xm·nH2O where M=Fe(II) (X=Cl, m=2, n=0), Fe(III) (X=Cl, m=3, n=4), Co(II) (X=Cl, m=2, n=0), Cu(II) (X=Cl, m=2, n=0) and UO2(II) (X=NO3, m=2, n=0). The thermal behaviour of the complexes has been studied and different thermodynamic parameters are calculated using Coats-Redfern method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Gamel, N., Mohamed, G. Synthesis, spectral and thermal characterization of 6-hydroxymethyl pyridine-2-carboxylic acid methyl ester and its complexes. J Therm Anal Calorim 81, 111–118 (2005). https://doi.org/10.1007/s10973-005-0753-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-0753-z

Navigation