Skip to main content
Log in

Enhanced corrosion resistance and self-healing effect of sol–gel coating incorporating one-pot-synthesized corrosion inhibitor-encapsulated silica nanocontainers

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Integration of corrosion inhibitor-loaded nanocontainers into sol–gel-derived anticorrosion coatings presents a promising strategy to endow them with self-healing ability and improve their long-term corrosion protection properties. In the present work, we demonstrate the preparation of sol–gel anticorrosion coating incorporating benzotriazole-loaded SiO2 mesoporous nanocontainers (BTA@SiO2) synthesized via a modified one-pot method. The nanocontainers exhibited suitable mesoporous structures and pH-dependent inhibitor release properties. Salt spray tests and EIS analysis on the nanocontainer-containing sol–gel coating indicated enhanced corrosion protection properties owing to the high compatibility of the silica skeleton of the nanocontainers with the sol–gel coating matrix, as well as the formation of inhibitive layer on the metal surface.

Graphical abstract

Highlights

  • Corrosion inhibitor-loaded silica nanocontainers were prepared via an one-pot approach.

  • The nanocontainers showed satisfactory mesoporous structures and pH-dependent release behavior.

  • The nanocontainer-doped sol–gel coating exhibited enhanced corrosion protection properties.

  • The silica nanocontainer shell provides better compatibility with coating matrix, thus creating less defects.

  • The inhibitive layer formed by the nanocontainers suppressed the corrosion process at coating defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li X, Zhang D, Liu Z, Li Z, Du C, Dong C (2015) Materials science: share corrosion data. Nature 527(7579):441–442. https://doi.org/10.1038/527441a

    Article  CAS  Google Scholar 

  2. Hou B, Li X, Ma X, Du C, Zhang D, Zheng M et al. (2017) The cost of corrosion in China. npj Mater Degrad 1(1):4. https://doi.org/10.1038/s41529-017-0005-2

    Article  Google Scholar 

  3. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90(1):33–72. https://doi.org/10.1021/cr00099a003

    Article  CAS  Google Scholar 

  4. Zheludkevich ML, Salvado IM, Ferreira MGS (2005) Sol–gel coatings for corrosion protection of metals. J Mater Chem 15(48):5099–5111. https://doi.org/10.1039/B419153F

    Article  CAS  Google Scholar 

  5. Li Y, Wu C, Xue M, Cai J, Huang Y, Yang H (2019) Preparation of sol–gel derived anticorrosive coating on Q235 carbon steel substrate with long-term corrosion prevention durability. Materials 12(12):1960

    Article  CAS  Google Scholar 

  6. Guo X, Zhang Q, Ding X, Shen Q, Wu C, Zhang L et al. (2016) Synthesis and application of several sol–gel-derived materials via sol–gel process combining with other technologies: a review. J Sol-Gel Sci Technol 79(2):328–358. https://doi.org/10.1007/s10971-015-3935-6

    Article  CAS  Google Scholar 

  7. Chou TP, Chandrasekaran C, Limmer SJ, Seraji S, Wu Y, Forbess MJ et al. (2001) Organic–inorganic hybrid coatings for corrosion protection. J Non-Cryst Solids 290(2):153–162. https://doi.org/10.1016/S0022-3093(01)00818-3

    Article  CAS  Google Scholar 

  8. Figueira RB, Silva CJR, Pereira EV (2015) Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: a review of recent progress. J Coat Technol Res 12(1):1–35. https://doi.org/10.1007/s11998-014-9595-6

    Article  CAS  Google Scholar 

  9. Yang H, Zhu M, Li Y(2022) Sol–gel research in China: a brief history and recent research trends in synthesis of sol–gel derived materials and their applications. J Sol–Gel Sci Technol https://doi.org/10.1007/s10971-022-05750-y

    Article  Google Scholar 

  10. Guglielmi M (1997) Sol–gel coatings on metals. J Sol-Gel Sci Technol 8(1):443–449. https://doi.org/10.1007/bf02436880

    Article  CAS  Google Scholar 

  11. Grigoriev D, Shchukina E, Shchukin DG (2017) Nanocontainers for self-healing coatings. Adv Mater Interfaces 4(1):1600318. https://doi.org/10.1002/admi.201600318

    Article  CAS  Google Scholar 

  12. Shchukin D, Möhwald H (2013) A coat of many functions. Science 341(6153):1458–1459. https://doi.org/10.1126/science.1242895

    Article  CAS  Google Scholar 

  13. Shchukin DG, Zheludkevich M, Yasakau K, Lamaka S, Ferreira MGS, Möhwald H (2006) Layer-by-Layer assembled nanocontainers for self-healing corrosion protection. Adv Mater 18(13):1672–1678. https://doi.org/10.1002/adma.200502053

    Article  CAS  Google Scholar 

  14. Cho SH, White SR, Braun PV (2009) Self-Healing polymer coatings. Adv Mater 21(6):645–649. https://doi.org/10.1002/adma.200802008

    Article  CAS  Google Scholar 

  15. Lamaka SV, Vaghefinazari B, Mei D, Petrauskas RP, Höche D, Zheludkevich ML (2017) Comprehensive screening of Mg corrosion inhibitors. Corros Sci 128:224–240. https://doi.org/10.1016/j.corsci.2017.07.011

    Article  CAS  Google Scholar 

  16. Finšgar M, Jackson J (2014) Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros Sci 86:17–41. https://doi.org/10.1016/j.corsci.2014.04.044

    Article  CAS  Google Scholar 

  17. Tiringer U, Durán A, Castro Y, Milošev I (2018) Self-healing effect of hybrid Sol–Gel coatings based on GPTMS, TEOS, SiO2 nanoparticles and Ce(NO3)3 applied on aluminum alloy 7075-T6. J Electrochem Soc 165(5):C213–C225. https://doi.org/10.1149/2.0211805jes

    Article  CAS  Google Scholar 

  18. Zhang F, Ju P, Pan M, Zhang D, Huang Y, Li G et al. (2018) Self-healing mechanisms in smart protective coatings: a review. Corros Sci 144:74–88. https://doi.org/10.1016/j.corsci.2018.08.005

    Article  CAS  Google Scholar 

  19. Shchukin DG, Zheludkevich M, Mohwald H (2006) Feedback active coatings based on incorporated nanocontainers. J Mater Chem 16(47):4561–4566. https://doi.org/10.1039/B612547F

    Article  CAS  Google Scholar 

  20. Zheludkevich ML, Shchukin DG, Yasakau KA, Möhwald H, Ferreira MGS (2007) Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chem Mater 19(3):402–411. https://doi.org/10.1021/cm062066k

    Article  CAS  Google Scholar 

  21. Cai J, Li Y, Wu C, Ding X, Yang H (2020) Preparation and properties of corrosion inhibitor-loaded hollow silica microspheres SiO2. Kuei Suan Jen Hsueh Pao/J Chin Ceram Soc 48(4):584–591. https://doi.org/10.14062/j.issn.0454-5648.20190488

    Article  CAS  Google Scholar 

  22. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR et al. (2001) Autonomic healing of polymer composites. Nature 409(6822):794–797. https://doi.org/10.1038/35057232

    Article  CAS  Google Scholar 

  23. Pirhady Tavandashti N, Ghorbani M, Shojaei A, Mol JMC, Terryn H, Baert K et al. (2016) Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects. Corros Sci 112:138–149. https://doi.org/10.1016/j.corsci.2016.07.003

    Article  CAS  Google Scholar 

  24. Haase MF, Grigoriev DO, Möhwald H, Shchukin DG (2012) Development of nanoparticle stabilized polymer nanocontainers with high content of the encapsulated active agent and their application in water-borne anticorrosive coatings. Adv Mater 24(18):2429–2435. https://doi.org/10.1002/adma.201104687

    Article  CAS  Google Scholar 

  25. Maia F, Yasakau KA, Carneiro J, Kallip S, Tedim J, Henriques T et al. (2016) Corrosion protection of AA2024 by sol–gel coatings modified with MBT-loaded polyurea microcapsules. Chem Eng J 283:1108–1117. https://doi.org/10.1016/j.cej.2015.07.087

    Article  CAS  Google Scholar 

  26. Wei H, Wang Y, Guo J, Shen NZ, Jiang D, Zhang X et al. (2015) Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J Mater Chem A 3(2):469–480. https://doi.org/10.1039/C4TA04791E

    Article  CAS  Google Scholar 

  27. Zheludkevich ML, Tedim J, Ferreira MGS (2012) “Smart” coatings for active corrosion protection based on multi-functional micro and nanocontainers. Electrochim Acta 82:314–323. https://doi.org/10.1016/j.electacta.2012.04.095

    Article  CAS  Google Scholar 

  28. Skorb EV, Fix D, Andreeva DV, Möhwald H, Shchukin DG (2009) Surface-modified mesoporous SiO2 containers for corrosion protection. Adv Funct Mater 19(15):2373–2379. https://doi.org/10.1002/adfm.200801804

    Article  CAS  Google Scholar 

  29. Shchukin DG, Möhwald H (2007) Surface-engineered nanocontainers for entrapment of corrosion inhibitors. Adv Funct Mater 17(9):1451–1458. https://doi.org/10.1002/adfm.200601226

    Article  CAS  Google Scholar 

  30. Tedim J, Zheludkevich ML, Bastos AC, Salak AN, Lisenkov AD, Ferreira MGS (2014) Influence of preparation conditions of layered double hydroxide conversion films on corrosion protection. Electrochim Acta 117:164–171. https://doi.org/10.1016/j.electacta.2013.11.111

    Article  CAS  Google Scholar 

  31. Montemor MF, Snihirova DV, Taryba MG, Lamaka SV, Kartsonakis IA, Balaskas AC et al. (2012) Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors. Electrochim Acta 60:31–40. https://doi.org/10.1016/j.electacta.2011.10.078

    Article  CAS  Google Scholar 

  32. Zheludkevich ML, Poznyak SK, Rodrigues LM, Raps D, Hack T, Dick LF et al. (2010) Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor. Corros Sci 52(2):602–611. https://doi.org/10.1016/j.corsci.2009.10.020

    Article  CAS  Google Scholar 

  33. Lvov YM, Shchukin DG, Möhwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2(5):814–820. https://doi.org/10.1021/nn800259q

    Article  CAS  Google Scholar 

  34. Zahidah KA, Kakooei S, Ismail MC, Raja PB (2017) Halloysite nanotubes as nanocontainer for smart coating application: a review. Prog Org Coat 111:175–185. https://doi.org/10.1016/j.porgcoat.2017.05.018

    Article  CAS  Google Scholar 

  35. Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28(6):1227–1250. https://doi.org/10.1002/adma.201502341

    Article  CAS  Google Scholar 

  36. Xu JB, Cao YQ, Fang L, Hu JM (2018) A one-step preparation of inhibitor-loaded silica nanocontainers for self-healing coatings. Corros Sci 140:349–362. https://doi.org/10.1016/j.corsci.2018.05.030

    Article  CAS  Google Scholar 

  37. Borisova D, Möhwald H, Shchukin DG (2013) Influence of embedded nanocontainers on the efficiency of active anticorrosive coatings for aluminum alloys part II: influence of nanocontainer position. ACS Appl Mater Interfaces 5(1):80–87. https://doi.org/10.1021/am302141y

    Article  CAS  Google Scholar 

  38. Borisova D, Möhwald H, Shchukin DG (2012) Influence of embedded nanocontainers on the efficiency of active anticorrosive coatings for aluminum alloys part I: influence of nanocontainer concentration. ACS Appl Mater Interfaces 4(6):2931–2939. https://doi.org/10.1021/am300266t

    Article  CAS  Google Scholar 

  39. Chen T, Chen RP, Jin Z, Liu J (2015) Engineering hollow mesoporous silica nanocontainers with molecular switches for continuous self-healing anticorrosion coating. J Mater Chem A 3(18):9510–9516. https://doi.org/10.1039/c5ta01188d

    Article  CAS  Google Scholar 

  40. Shchukina E, Shchukin D, Grigoriev D (2017) Effect of inhibitor-loaded halloysites and mesoporous silica nanocontainers on corrosion protection of powder coatings. Prog Org Coat 102:60–65. https://doi.org/10.1016/j.porgcoat.2016.04.031

    Article  CAS  Google Scholar 

  41. Borisova D, Möhwald H, Shchukin DG (2011) Mesoporous silica nanoparticles for active corrosion protection. ACS Nano 5(3):1939–1946. https://doi.org/10.1021/nn102871v

    Article  CAS  Google Scholar 

  42. Hollamby MJ, Fix D, Dönch I, Borisova D, Möhwald H, Shchukin D (2011) Hybrid polyester coating incorporating functionalized mesoporous carriers for the holistic protection of steel surfaces. Adv Mater 23(11):1361–1365. https://doi.org/10.1002/adma.201003035

    Article  CAS  Google Scholar 

  43. Fickert J, Rupper P, Graf R, Landfester K, Crespy D (2012) Design and characterization of functionalized silica nanocontainers for self-healing materials. J Mater Chem 22(5):2286–2291. https://doi.org/10.1039/C2JM15151K

    Article  CAS  Google Scholar 

  44. Liang Y, Wang M, Wang C, Feng J, Li J, Wang L et al. (2016) Facile synthesis of smart nanocontainers as key components for construction of self-healing coating with Superhydrophobic surfaces. Nanoscale Res Lett 11(1):231. https://doi.org/10.1186/s11671-016-1444-3

    Article  CAS  Google Scholar 

  45. Snihirova D, Lamaka SV, Cardoso MM, Condeço JAD, Ferreira HECS, de Fatima Montemor M (2014) pH-sensitive polymeric particles with increased inhibitor-loading capacity as smart additives for corrosion protective coatings for AA2024. Electrochim Acta 145:123–131. https://doi.org/10.1016/j.electacta.2014.09.009

    Article  CAS  Google Scholar 

  46. Son Y-H, park M, Choy YB, Choi HR, Kim DS, Park KC et al. (2007) One-pot synthetic route to polymer–silica assembled capsule encased with nonionic drug molecule. Chem Commun 27:2799–2801. https://doi.org/10.1039/B702288C

    Article  Google Scholar 

  47. Ramezanzadeh B, Ghasemi E, Askari F, Mahdavian M (2015) Synthesis and characterization of a new generation of inhibitive pigment based on zinc acetate/benzotriazole: solution phase and coating phase studies. Dyes Pigments 122:331–345. https://doi.org/10.1016/j.dyepig.2015.07.013

    Article  CAS  Google Scholar 

  48. Viitala R, Jokinen M, Rosenholm JB (2007) Mechanistic studies on release of large and small molecules from biodegradable SiO2. Int J Pharmaceutics 336(2):382–390. https://doi.org/10.1016/j.ijpharm.2006.12.008

    Article  CAS  Google Scholar 

  49. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Controlled Release 5(1):37–42. https://doi.org/10.1016/0168-3659(87)90035-6

    Article  CAS  Google Scholar 

  50. Peppas NA (1985) Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 60(4):110–111

    CAS  Google Scholar 

  51. Bonora PL, Deflorian F, Fedrizzi L (1996) Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion. Electrochim Acta 41(7):1073–1082. https://doi.org/10.1016/0013-4686(95)00440-8

    Article  CAS  Google Scholar 

  52. Mrad M, Dhouibi L, Montemor MF (2018) Elaboration of γ-glycidoxypropyltrimethoxysilane coating on AA2024-T3 aluminum alloy: influence of synthesis route on physicochemical and anticorrosion properties. Prog Org Coat 121:1–12. https://doi.org/10.1016/j.porgcoat.2018.04.005

    Article  Google Scholar 

  53. Pehkonen SO, Yuan S (2018) Chapter 4 - General background of sol–gel coatings for corrosion mitigation. In: Pehkonen SO, Yuan S (eds). Interface science and technology, Elsevier, p 63–113

Download references

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ20E020008), by the Open Project of State Key Lab of Silicon Materials, Zhejiang University (SKL2020-11), by the Fundamental Research Funds for the Central Universities (K20220175), and by the Guangxi Department of Science and Technology-Zhejiang University Science, Technology and Innovation Cooperation Project (No. ZD20302002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhao, C., Li, Y. et al. Enhanced corrosion resistance and self-healing effect of sol–gel coating incorporating one-pot-synthesized corrosion inhibitor-encapsulated silica nanocontainers. J Sol-Gel Sci Technol 104, 78–90 (2022). https://doi.org/10.1007/s10971-022-05929-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05929-3

Keywords

Navigation