Skip to main content

Advertisement

Log in

Solar spectral management with electrochromic devices including PMMA films doped with biluminescent ionosilicas

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The technological potential of poly(methyl methacrylate) (PMMA)-based composite films doped with lanthanide-doped sol–gel derived ionosilicas (IS-Ln) previously proposed for luminescent down-shifting (LDS) and luminescent solar concentrator (LSC) layers connected to photovoltaic (PV) cells is extended here to electrochromic devices (ECDs), targeting the fabrication of single energy harvesting/conversion/management LSC-LDS/PV/ECD systems. These integrated devices have foreseen application in the windows of future zero-energy buildings of smart cities. The proof-of-concept is given with the report of the electro-optical performance of an ECD comprising an optimized electrolyte film composed of PMMA, IS-Nd, and IS-Eu, and the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. This amorphous electrolyte is stable below 160 °C, exhibits high ionic conductivity (2.13 × 10−4 and 8.76 × 10−4 S cm−1 at room temperature and 44 °C, respectively), and emits in the visible (red color) and near-infrared (NIR) spectral regions. The device demonstrated fast switching speed (50 s) and high transparency in the visible-to-NIR spectral regions (transmittance (T) = 79/96/89/77% at 555/1000/1500/1650 nm in the as-prepared state, respectively). Upon application of ±2.5 V for 200 cycles, at the same wavelengths, the Tbleached/Tcolored values were 44/28, 46/26, 39/20, and 27/9%, respectively, and the coloration efficiency (CE) values CEin/CEout values were −302/+181, −381/+228, −446/+267 and −734/+440 cm2 C−1, respectively.

Highlights

  • Red-emitting ECDs enabling dynamic control of sunlight and offering uninterrupted heat emission were fabricated.

  • The ECD electrolyte composition was based on the formulation used previously for films acting both as LDS and LSC layers.

  • The electrolyte included PMMA, Nd3+/Eu3+-doped ionosilicas, and 1-butyl-3-methylimidazolium hexafluorophosphate.

  • The electrolyte is amorphous, exhibits good ionic conductivity, and emits in the visible (red color) and NIR regions.

  • The ECD performance proves its applicability in an integrated LSC-LDS/PV/ECD system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Energy performance of buildings directive. Eur Commun https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en. Accessed Apr 2021

  2. Granqvist CG, Arvizu MA, Pehlivan IB, Qu HY, Wen RT, Niklasson GA (2018) Electrochromic materials and devices for energy efficiency and human comfort in buildings: a critical review. Electrochim Acta 259:1170–1182. https://doi.org/10.1016/j.electacta.2017.11.169

    Article  CAS  Google Scholar 

  3. Nearly zero-energy buildings. Eur Commun https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings/nearly-zero-energy-buildings. Accessed Apr 2021

  4. Renewable energy directive. Eur Commun https://ec.europa.eu/energy/topics/renewable-energy/renewable-energy-directive_pt. Accessed Apr 2021

  5. Energy efficiency. Eur Commun https://ec.europa.eu/energy/topics/energy-efficiency_en. Accessed Apr 2021

  6. Energy efficiency directive. Eur Commun https://ec.europa.eu/energy/topics/energy-efficiency/targets-directive-and-rules/energy-efficiency-directive_en. Accessed Apr 2021

  7. 2030 climate & energy framework. Eur Commun https://ec.europa.eu/clima/policies/strategies/2030_en. Accessed Apr 2021

  8. 2050 long-term strategy. Eur Commun https://ec.europa.eu/clima/policies/strategies/2050_en. Accessed Apr 2021

  9. A European Green Deal. Eur Commun https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en. Accessed Apr 2021

  10. United Nations Take Action for the Sustainable Development Goals. https://www.un.org/sustainabledevelopment/sustainable-development-goals/. Accessed Apr 2021

  11. Guterres A (2020) Remarks to international energy agency clean energy transition summit. United Nations Secr. https://www.un.org/sg/en/content/sg/speeches/2020-07-09/remarks-international-energy-agency-clean-energy-transition-summit. Accessed Apr 2021

  12. Casini M (2018) Active dynamic windows for buildings: a review. Renew Energy 119:923–934. https://doi.org/10.1016/j.renene.2017.12.049

    Article  Google Scholar 

  13. DeForest N, Shehabi A, O’Donnell J, Garcia G, Greenblatt J, Lee ES, Selkowitz S, Milliron DJ (2015) United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings. Build Environ 89:107–117. https://doi.org/10.1016/j.buildenv.2015.02.021

    Article  Google Scholar 

  14. Llordés A, Garcia G, Gazquez J, Milliron DJ (2013) Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500:323–326. https://doi.org/10.1038/nature12398

    Article  CAS  Google Scholar 

  15. Kim J, Ong GK, Wang Y, LeBlanc G, Williams TE, Mattox TM, Helms BA, Milliron DJ (2015) Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance. Nano Lett 15:5574–5579. https://doi.org/10.1021/acs.nanolett.5b02197

    Article  CAS  Google Scholar 

  16. Xu J, Zhang Y, Zhai TT, Kuang Z, Li J, Wang Y, Gao Z, Song YY, Xia XH (2018) Electrochromic-tuned plasmonics for photothermal sterile window. ACS Nano 12:6895–6903. https://doi.org/10.1021/acsnano.8b02292

    Article  CAS  Google Scholar 

  17. Zhang S, Cao S, Zhang T, Fisher A, Lee JY (2018) Al 3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ Sci 11:2884–2892. https://doi.org/10.1039/c8ee01718b

    Article  CAS  Google Scholar 

  18. Barawi M, Veramonti G, Epifani M, Giannuzzi R, Sibillano T, Giannini C, Rougier A, Manca M (2018) A dual band electrochromic device switchable across four distinct optical modes. J Mater Chem A 6:10201–10205. https://doi.org/10.1039/c8ta02636j

    Article  CAS  Google Scholar 

  19. Cardoso MA, Pereira RFP, Pereira S, Gonçalves H, Silva MM, Carlos LD, Nunes SC, Fortunato E, Ferreira RAS, Rego R, Bermudez VZ (2019) Micro-thermoelectric devices: three-mode modulation electrochromic device with high energy efficiency for windows of buildings located in continental climatic regions. Adv Sustain Syst 3:1970007. https://doi.org/10.1002/adsu.201970007

    Article  Google Scholar 

  20. Gonçalves HMR, Pereira RFP, Lepleux E, Carlier T, Pacheco L, Pereira S, Valente AJM, Fortunato E, Duarte AJ, Bermudez VZ (2019) Nanofluid based on glucose‐derived carbon dots functionalized with [Bmim]Cl for the next generation of smart windows. Adv Sustain Syst 3:1900047. https://doi.org/10.1002/adsu.201900047

    Article  CAS  Google Scholar 

  21. Nunes SC, Saraiva SM, Pereira RFP, Pereira S, Silva MM, Carlos LD, Fortunato E, Ferreira RAS, Rego R, Bermudez VZ (2019) Sustainable dual-mode smart windows for energy-efficient buildings. ACS Appl Energy Mater 2:1951–1960. https://doi.org/10.1021/acsaem.8b02041

    Article  CAS  Google Scholar 

  22. Gonçalves MC, Pereira RFP, Alves R, Nunes SC, Fernandes M, Gonçalves HMR, Pereira S, Silva MM, Fortunato E, Rego R, Bermudez VZ (2020) Electrochromic device composed of a di-urethanesil electrolyte incorporating lithium triflate and 1-butyl-3-methylimidazolium chloride. Front Mater 7: https://doi.org/10.3389/fmats.2020.00139

  23. Baetens R, Jelle BP, Gustavsen A (2010) Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol Energy Mater Sol Cells 94:87–105. https://doi.org/10.1016/j.solmat.2009.08.021

    Article  CAS  Google Scholar 

  24. Jelle BP, Hynd A, Gustavsen A, Arasteh D, Goudey H, Hart R (2012) Fenestration of today and tomorrow: a state-of-the-art review and future research opportunities. Sol Energy Mater Sol Cells 96:1–28. https://doi.org/10.1016/j.solmat.2011.08.010

    Article  CAS  Google Scholar 

  25. Fernandes M, de Zea Bermudez V (2021) Sol-gel materials for smart electrochromic devices. In: Chemical solution synthesis for materials design and thin film device applications. Soumen Das, Elsevier, pp 439–475

  26. Mortimer RJ, Rosseinsky DR, Monk PMS (2013) Electrochromic materials and devices. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

  27. Piccolo A, Simone F (2015) Performance requirements for electrochromic smart window. J Build Eng 3:94–103. https://doi.org/10.1016/j.jobe.2015.07.002

    Article  Google Scholar 

  28. Fernandes M, Freitas V, Pereira S, Leones R, Silva MM, Carlos LD, Fortunato E, Ferreira RAS, Rego R, Bermudez VZ (2018) Luminescent electrochromic devices for smart windows of energy-efficient buildings. Energies 11:3513. https://doi.org/10.3390/en11123513

    Article  Google Scholar 

  29. Barquinha P, Gonçalves G, Pereira L, Martins R, Fortunato E (2007) Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs. Thin Solid Films 515:8450–8454. https://doi.org/10.1016/j.tsf.2007.03.176

    Article  CAS  Google Scholar 

  30. Davy NC, Sezen-Edmonds M, Gao J, Lin X, Liu A, Yao N, Kahn A, Loo Y-L (2017) Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nat Energy 2:17104. https://doi.org/10.1038/nenergy.2017.104

    Article  CAS  Google Scholar 

  31. Jelle BP, Breivik C (2012) State-of-the-art building integrated photovoltaics. Energy Procedia 20:68–77. https://doi.org/10.1016/j.egypro.2012.03.009

    Article  Google Scholar 

  32. Frias A, Cardoso M, Bastos A, Correia SFH, André PS, Carlos LD, Bermudez VZ, Ferreira RAS (2019) Transparent luminescent solar concentrators using Ln3+-based ionosilicas towards photovoltaic windows. Energies 12:451. https://doi.org/10.3390/en12030451

    Article  CAS  Google Scholar 

  33. Cardoso MA, Correia SFH, Frias AR et al. (2020) Solar spectral conversion based on plastic films of lanthanide-doped ionosilicas for photovoltaics: down-shifting layers and luminescent solar concentrators. J Rare Earths 38:531–538. https://doi.org/10.1016/j.jre.2020.01.007

    Article  CAS  Google Scholar 

  34. Ferreira RAS, Correia SFH, Monguzzi A, Liu X, Meinardi F (2020) Spectral converters for photovoltaics—what’s ahead. Mater Today 33:105–121. https://doi.org/10.1016/j.mattod.2019.10.002

    Article  Google Scholar 

  35. Klampaftis E, Ross D, McIntosh KR, Richards BS (2009) Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review. Sol Energy Mater Sol Cells 93:1182–1194. https://doi.org/10.1016/j.solmat.2009.02.020

    Article  CAS  Google Scholar 

  36. Hovel HJ, Hodgson RT, Woodal JM (1979) The effect of fluorescent wavelength shifting on solar cell spectral response. Sol Energy Mater 2:19–29. https://doi.org/10.1016/0165-1633(79)90027-3

    Article  CAS  Google Scholar 

  37. Strümpel C, McCann M, Beaucarne G, Arkhipov V, Slaoui A, Švrček V, del Cañizo C, Tobias I (2007) Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials. Sol Energy Mater Sol Cells 91:238–249. https://doi.org/10.1016/j.solmat.2006.09.003

    Article  CAS  Google Scholar 

  38. McIntosh KR, Lau G, Cotsell JN, Hanton K, Bätzner DL, Bettiol F, Richards BS (2009) Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer. Prog Photovolt Res Appl 17:191–197. https://doi.org/10.1002/pip.867

    Article  CAS  Google Scholar 

  39. Rothemund R, Kreuzer S, Umundum T, Meinhardt G, Fromherz T, Jantsch W (2011) External quantum efficiency analysis of Si solar cells with II–VI nanocrystal luminescent down-shifting layers. Energy Procedia 10:83–87. https://doi.org/10.1016/j.egypro.2011.10.157

    Article  CAS  Google Scholar 

  40. Farinhas J, Correia SFH, Fu L, Botas AMP, André PS, Ferreira RAS, Charas A (2021) Ultraviolet-filtering luminescent transparent coatings for high-performance PTB7-Th:ITIC–based organic solar cells. Front Nanotechnol 3. https://doi.org/10.3389/fnano.2021.635929

  41. Thakur VK, Ding G, Ma J, Lee PS, Lu X (2012) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24:4071–4096. https://doi.org/10.1002/adma.201200213

    Article  CAS  Google Scholar 

  42. Kai JA, Felinto MCFC, Nunes LAO, Malta OL, Brito HF (2011) Intermolecular energy transfer and photostability of luminescence-tuneable multicolour PMMA films doped with lanthanide-beta-diketonate complexes. J Mater Chem 21:3796–3802. https://doi.org/10.1039/C0jm03474f

    Article  CAS  Google Scholar 

  43. Lima PP, Ferreira RAS, Freire RO, Paz FAA, Fu L, Alves S, Carlos LD, Malta OL (2006) Spectroscopic study of a UV-photostable organic-inorganic hybrids incorporating an Eu3+ β-diketonate complex. ChemPhysChem 7:735–746. https://doi.org/10.1002/cphc.200500588

    Article  CAS  Google Scholar 

  44. Lima PP, Nolasco MM, Paz FAA, Ferreira RAS, Longo RL, Malta OL, Carlos LD (2013) Photo–click chemistry to design highly efficient lanthanide β-diketonate complexes stable under UV irradiation. Chem Mater 25:586–598. https://doi.org/10.1021/cm303776x

    Article  CAS  Google Scholar 

  45. Ramalho JFCB, Correia SFH, Fu L, Dias LMS, Adão P, Mateus P, Ferreira RAS, André PS (2020) Super modules-based active QR codes for smart trackability and IoT: a responsive-banknotes case study. npj Flex Electron 4:11. https://doi.org/10.1038/s41528-020-0073-1

    Article  Google Scholar 

  46. Correia SFH, Frias AR, Fu L, Rondão R, Pecoraro E, Ribeiro SJL, André PS, Ferreira RAS, Carlos LD (2018) Large-area tunable visible-to-near-infrared luminescent solar concentrators. Adv Sustain Syst 2:1800002. https://doi.org/10.1002/adsu.201800002

    Article  CAS  Google Scholar 

  47. Correia SFH, Bastos ARN, Fu L, Carlos LD, André PS, Ferreira RAS (2019) Lanthanide-based downshifting layers tested in a solar car race. Opto-Electron Adv 2:19000601–19000608. https://doi.org/10.29026/oea.2019.190006

    Article  CAS  Google Scholar 

  48. Lunstroot K, Driesen K, Nockemann P, Görller-Walrand C, Binnemans K, Bellayer S, Le Bideau J, Vioux A (2006) Luminescent ionogels based on europium-doped ionic liquids confined within silica-derived networks. Chem Mater 18:5711–5715. https://doi.org/10.1021/cm061704w

    Article  CAS  Google Scholar 

  49. Tang Q, Li H, Yue Y, Zhang Q, Wang H, Li Y, Chen P (2017) 1-Ethyl-3-methylimidazolium tetrafluoroborate-doped high ionic conductivity gel electrolytes with reduced anodic reaction potentials for electrochromic devices. Mater Des 118:279–285. https://doi.org/10.1016/j.matdes.2017.01.033

    Article  CAS  Google Scholar 

  50. Ali U, Karim KJBA, Buang NA (2015) A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev 55:678–705. https://doi.org/10.1080/15583724.2015.1031377

    Article  CAS  Google Scholar 

  51. Logacheva NM, Baulin VE, Tsivadze AY, Pyatova EN, Ivanova IS, Velikodnyc YA, Chernyshev VV (2009) Ni(II), Co(II), Cu(II), Zn(II) and Na(I) complexes of a hybrid ligand 4′-(4‴-benzo-15-crown-5)-methyloxy-2,2′:6′,2″-terpyridine. Dalton Trans 2482–2489. https://doi.org/10.1039/b819805e

  52. Scott MP, Brazel CS, Benton MG, Mays JW, Holbrey JD, Rogers RD (2002) Application of ionic liquids as plasticizers for poly(methyl methacrylate). Chem Commun 2:1370–1371. https://doi.org/10.1039/b204316p

    Article  CAS  Google Scholar 

  53. Zhao L, Li Y, Cao X, You J, Dong W (2012) Multifunctional role of an ionic liquid in melt-blended poly(methyl methacrylate)/ multi-walled carbon nanotube nanocomposites. Nanotechnology 23:255702. https://doi.org/10.1088/0957-4484/23/25/255702

    Article  CAS  Google Scholar 

  54. Shamsuri AA, Daik R (2015) Applications of ionic liquids and their mixtures for preparation of advanced polymer blends and composites: a short review. Rev Adv Mater Sci 40:45–59

    CAS  Google Scholar 

  55. Othman L, Chew KW, Osman Z (2007) Impedance spectroscopy studies of poly (methyl methacrylate)-lithium salts polymer electrolyte systems. Ionics 13:337–342. https://doi.org/10.1007/s11581-007-0120-0

    Article  CAS  Google Scholar 

  56. Zech O, Stoppa A, Buchner R, Kunz W (2010) The conductivity of imidazolium-based ionic liquids from (248 to 468) K. B. variation of the anion. J Chem Eng Data 55:1774–1778. https://doi.org/10.1021/je900793r

    Article  CAS  Google Scholar 

  57. Fernandes M, de Zea Bermudez V, Ferreira RAS, Carlos LD, Charas A, Morgado J, Silva MM, Smith MJ (2007) Highly photostable luminescent poly (E-caprolactone) siloxane biohybrids doped with europium complexes. Chem Mater 19:3892–3901. https://doi.org/10.1021/cm062832n

    Article  CAS  Google Scholar 

  58. Fernandes M, de Zea Bermudez V, Ferreira RAS, Carlos LD, Martins NV (2008) Incorporation of the Eu(tta)3(H2O)2 complex into a co-condensed d-U(600)/d-U(900) matrix. J Lumin 128:205–212. https://doi.org/10.1016/j.jlumin.2007.07.009

    Article  CAS  Google Scholar 

  59. Murray MP, Bruckman LS, French RH (2012) Photodegradation in a stress and response framework: poly(methyl methacrylate) for solar mirrors and lens. J Photon Energy 2:022004. https://doi.org/10.1117/1.JPE.2.022004. and references therein

    Article  CAS  Google Scholar 

  60. Poliskie M (2016) Solar module packaging. CRC Press, Boca Raton.

  61. Fernandes M, Botas AMP, Leones R, Pereira S, Silva MM, Ferreira RAS, Carlos LD, Fortunato E, Rego E, Bermudez VZ (2014) Luminescent electrochromic device based on a biohybrid electrolyte doped with a mixture of potassium triflate and a europium-diketonate complex. ECS Trans 61:213–225. https://doi.org/10.1149/06105.0213ecst

    Article  CAS  Google Scholar 

  62. Green MA, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY (2019) Solar cell efficiency tables (version 54). Prog Photovolt Res Appl 27:565–575. https://doi.org/10.1002/pip.3171

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Funds by FCT—Foundation for Science and Technology and, whenever applicable, by FEDER funds through the POCI—COMPETE 2020—Operational Program Competitiveness and Internationalization in Axis I—Strengthening research, technological development, and innovation (UIDB/00616/2020, UIDP/00616/2020, UID/QUI/00686/2020, UID/QUI/00313/2020, UIDB/50006/2020, SOLPOWINS-PTDC/CTM-REF/4304/2020, OBTAIN-NORTE-01-0145-FEDER-000084, and PTDC/BTM-MAT/30858/2017). This work was also developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by Portuguese funds through the FCT/MCTES. MA Cardoso acknowledges FCT for Ph.D. grant SFRH/BD/118466/2016 and SFH Correia acknowledges SolarFlex (CENTRO-01–0145-FEDER-030186).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rute A. S. Ferreira or Verónica de Zea Bermudez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, M.A., Correia, S.F.H., Gonçalves, H.M.R. et al. Solar spectral management with electrochromic devices including PMMA films doped with biluminescent ionosilicas. J Sol-Gel Sci Technol 101, 58–70 (2022). https://doi.org/10.1007/s10971-021-05612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05612-z

Keywords

Navigation