Skip to main content
Log in

Structure engineering of Fe-based MOF aerogel by Halloysite Nanotubes for efficient methylene blue adsorption

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Halloysite Nanotubes (HNTs) with large surface/volume ratio and rich reactive groups are incorporated into Fe-based MOF aerogel to develop MOF(Fe)/HNTs composite aerogels for efficient methylene blue (MB) adsorption. A sol–gel method along with supercritical drying technology is applied for the preparation of the MOF(Fe)/HNTs composite aerogels. Micro-morphology and pore structure of the aerogels are properly regulated by controlling the addition amount of HNTs. The obtained samples show three-dimensional mesoporous network structures. The addition of HNTs can slightly increase the specific surface area of the aerogel and then decrease gradually with the increase of HNTs content. The MOF(Fe)/HNTs composite aerogels show favorable adsorption property towards MB and the maximum adsorption capacity can be 384 mg/g with the adsorption efficiency of 96.1%. Besides, the adsorption kinetic analysis reveals that the adsorption process of the MOF(Fe)/HNTs composite aerogel follows the pseudo-second-order model, indicating that chemical sorption may be the rate-limiting step.

Highlights

  • HNTs are successfully employed for the structure regulation of MOF(Fe) aerogel.

  • The MOF(Fe)/HNTs composite aerogel shows favorable methylene blue adsorption property.

  • Chemical sorption tends to be the rate-limiting step of the adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Jenkins A, Ferrier RC, Li H, Luo W, Wang T (2015) Environ Int 77:5–15

    Article  CAS  Google Scholar 

  2. Mantasha I, Saleh HAM, Qasem KMA, Shahid M, Mehtab M, Ahmad M (2020) Inorg Chim Acta 511:11

    Google Scholar 

  3. Robinson T, McMullan G, Marchant R, Nigam P (2001) Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  4. Sedighi F, Esmaeili-Zare M, Sobhani-Nasab A, Behpour M (2018) J Mater Sci-Mater El 29:13737–13745

    Article  CAS  Google Scholar 

  5. Lim S-H, Rhee S-W (2011) RSC Adv 1.

  6. Pandit P, Basu S (2004) Ind Eng Chem Res 43:7861–7864

    Article  CAS  Google Scholar 

  7. Seth S, Savitha G, Moorthy JN (2015) J Mater Chem A 3:22915–22922

    Article  CAS  Google Scholar 

  8. Sala M, Lopez-Grimau V, Gutierrez-Bouzan C (2016) Materials 9.

  9. Ghaffar A, Zhang L, Zhu X, Chen B (2018) Environ Sci Technol 52:4265–4274

    Article  CAS  Google Scholar 

  10. Li J, Gong J-L, Zeng G-M, Zhang P, Song B, Cao W-C, Liu H-Y, Huan S-Y (2018) J Colloid Interface Sci 527:267–279

    Article  CAS  Google Scholar 

  11. Pereira MFR, Soares SF, Órfão JJM, Figueiredo JL (2003) Carbon 41:811–821

    Article  CAS  Google Scholar 

  12. Tanthapanichakoon W, Ariyadejwanich P, Japthong P, Nakagawa K, Mukai SR, Tamon H (2005) Water Res 39:1347–1353

    Article  CAS  Google Scholar 

  13. Kim S-I, Yamamoto T, Endo A, Ohmori T, Nakaiwa M (2006) Micropor Mesopor Mat 96:191–196

    Article  CAS  Google Scholar 

  14. Ho KY, McKay G, Yeung KL (2003) Langmuir 19:3019–3024

    Article  CAS  Google Scholar 

  15. Yan Z, Tao S, Yin J, Li G (2006) J Mater Chem 16.

  16. Wu F-C, Tseng R-L, Juang R-S (2005) Sep Purif Technol 47:10–19

    Article  CAS  Google Scholar 

  17. Maffei AV, Budd PM, McKeown NB (2006) Langmuir 22:4225–4229

    Article  CAS  Google Scholar 

  18. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423:705–714

    Article  CAS  Google Scholar 

  19. Kitagawa S, Kitaura R, Noro S (2004) Angew Chem Int Ed Engl 43:2334–2375

    Article  CAS  Google Scholar 

  20. Khan NA, Hasan Z, Jhung SH (2013) J Hazard Mater 244-245:444–456

    Article  CAS  Google Scholar 

  21. Hwang YK, Hong DY, Chang JS, Jhung SH, Seo YK, Kim J, Vimont A, Daturi M, Serre C, Ferey G (2008) Angew Chem Int Ed Engl 47:4144–4148

    Article  CAS  Google Scholar 

  22. Nouar F, Eckert J, Eubank JF, Forster P, Eddaoudi M (2009) J Am Chem Soc 131:2864–2870

    Article  CAS  Google Scholar 

  23. Yaghi OM (2016) J Am Chem Soc 138:15507–15509

    Article  CAS  Google Scholar 

  24. Karmakar S, Dechnik J, Janiak C, De S (2016) J Hazard Mater 303:10–20

    Article  CAS  Google Scholar 

  25. Sun YZ, Chen M, Liu H, Zhu Y, Wang DB, Yan M (2020) Appl Surf Sci 525:9

    Article  Google Scholar 

  26. Huang XX, Qiu LG, Zhang W, Yuan YP, Jiang X, Xie AJ, Shen YH, Zhu JF (2012) Crystengcomm 14:1613–1617

    Article  CAS  Google Scholar 

  27. Wan Y, Wang J, Huang F, Xue Y, Cai N, Liu J, Chen W, Yu F (2018) RSC Adv 8:34552–34559

    Article  CAS  Google Scholar 

  28. Zhu L, Zong L, Wu X, Li M, Wang H, You J, Li C (2018) ACS Nano 12:4462–4468

    Article  CAS  Google Scholar 

  29. Li Y, Zou B, Xiao A, Zhang H (2017) Chin J Chem 35:1501–1511

    Article  CAS  Google Scholar 

  30. Wen M, Li G, Liu H, Chen J, An T, Yamashita H (2019) Environ Sci-Nano 6:1006–1025

    Article  CAS  Google Scholar 

  31. Ai L, Zhang C, Li L, Jiang J (2014) Appl Catal B-Environ 148-149:191–200

    Article  CAS  Google Scholar 

  32. Du M, Guo B, Jia D (2010) Polym Int 59:574–582

    Article  CAS  Google Scholar 

  33. Kloprogge JT, Frost RL (1999) J Raman Spectrosc, 30:1079–1085

    Article  CAS  Google Scholar 

  34. Jeong GY, Kim Y, Chang S, Kim SJ (2003) Neues Jahrb für Mineralogie - Monatshefte 2003:421–432

    Article  Google Scholar 

  35. Anastopoulos I, Mittal A, Usman M, Mittal J, Yu GH, Nunez-Delgado A, Kornaros M (2018) J Mol Liq 269:855–868

    Article  CAS  Google Scholar 

  36. Liu RC, Zhang B, Mei DD, Zhang HQ, Liu JD (2011) Desalination 268:111–116

    Article  CAS  Google Scholar 

  37. Liu H, Chu P, Li H, Zhang H, Li J (2016) J Sol-Gel Sci Techn 80:651–659

    Article  CAS  Google Scholar 

  38. Song G, Wang Z, Wang L, Li G, Huang M, Yin F (2014) Chin J Catal 35:185–195

    Article  CAS  Google Scholar 

  39. Zhang T-Z, Lu Y, Li Y-G, Zhang Z, Chen W-L, Fu H, Wang E-B (2012) Inorg Chim Acta 384:219–224

    Article  CAS  Google Scholar 

  40. Dhakshinamoorthy A, Alvaro M, Garcia H (2011) ACS Catal 1:836–840

    Article  CAS  Google Scholar 

  41. Tu TH, Cam PTN, Huy LVT, Phong MT, Nam HM, Hieu NH (2019) Mater Lett 238:134–137

    Article  CAS  Google Scholar 

  42. Sing KSW (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  43. Lagergren SYD (1989) Handlingar 24:1–39

    Google Scholar 

  44. Ho YS, McKay G (1999) Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  45. Gosset T, Trancart J-L, Thévenot DR (1986) Water Res 20:21–26

    Article  CAS  Google Scholar 

  46. Blanchard G, Maunaye M, Martin G (1984) Water Res 18:1501–1507

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51772202).

Author information

Authors and Affiliations

Authors

Contributions

HLiu and WY conceived and enabled the research. HLiu performed the material synthesis, physical, and adsorption characterization. HLiu and JC contributed to the experimental results analysis and writing the manuscript. WY contributed to revise the manuscript. CJ, HLi, JL, YL, BZ, and ZC assisted in the result discussion.

Corresponding author

Correspondence to Wenjin Yuan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Chen, J., Yuan, W. et al. Structure engineering of Fe-based MOF aerogel by Halloysite Nanotubes for efficient methylene blue adsorption. J Sol-Gel Sci Technol 99, 55–62 (2021). https://doi.org/10.1007/s10971-021-05540-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05540-y

Keywords

Navigation