Skip to main content
Log in

Effect of sintering temperature and soaking time on the magnetic properties and transmission behavior of nano crystalline Mg0.8Mn0.2Al0.1Fe1.9O4

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, Mg–Mn–Al ferrite with a chemical composition of Mg0.8Mn0.2Al0.1Fe1.9O4 was synthesized via the sol–gel auto-combustion method. The effects of the sintering time and temperature on the magnetic properties and transmission behaviors were investigated in detail. X-ray diffraction (XRD) results revealed that the powders in the as auto-combusted state were in an amorphous state. Moreover, based on the differential thermal analysis (DTA) curve, the calcination temperature was calculated to be ~900 °C. According to the Archimedes equation, the highest density was obtained for the specimen sintered at 1250 °C for 5 h (94% of the theoretical density). In addition, permagraph results revealed the average magnetic properties of the mentioned samples are as follows: Hc = 7.0 Oe and Ms = 1400 G. According to vector network analyzer (VNA) results, the samples with qualified transmission behaviors showed low scattering parameters in a wide range of frequencies.

Highlights

  • Nanocrystalline Mg0.8Mn0.2Al0.1Fe1.9O4 was formed via a sol–gel auto-combustion method.

  • Microstructural, magnetic, and transmission behaviors (TB) were investigated.

  • The maximum density was obtained for the sample sintered at 1250 °C for 5 h (~4.08 g/cm3).

  • The TB of the samples was improved by increasing Ms.

  • The most favorable TB was obtained for the sample sintered at 1250 °C for 5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pourzaki M, Kavkhani R, Kianvash A, Hajalilou A (2019) Structure, magnetic and transmission characteristics of the Co substituted Mg ferrites synthesized via a standard ceramic route. Ceram Int 45:5710–5716. https://doi.org/10.1016/j.ceramint.2018.12.036

    Article  CAS  Google Scholar 

  2. Shah MS, Ali K, Ali I et al. (2018) Structural and magnetic properties of praseodymium substituted barium-based spinel ferrites. Mater Res Bull 98:77–82. https://doi.org/10.1016/j.materresbull.2017.09.063

    Article  CAS  Google Scholar 

  3. Krishna KR, Kumar KV, Ravinder D (2012) Structural and electrical conductivity studies in nickel-zinc ferrite. Adv Mater Phys Chem 02:185–191. https://doi.org/10.4236/ampc.2012.23028

    Article  CAS  Google Scholar 

  4. Anu K, Hemalatha J (2019) Magnetic and electrical conductivity studies of zinc doped cobalt ferrite nanofluids. J Mol Liq 284:445–453. https://doi.org/10.1016/j.molliq.2019.04.018

    Article  CAS  Google Scholar 

  5. Hajalilou A, Mazlan SA (2016) A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties. Appl Phys A Mater Sci Process 122. https://doi.org/10.1007/s00339-016-0217-2

  6. Gan G, Zhang H, Li Q et al. (2018) Low loss, enhanced magneto-dielectric properties of Bi2O3 doped Mg-Cd ferrites for high frequency antennas. J Alloy Compd 735:2634–2639. https://doi.org/10.1016/j.jallcom.2017.12.002

    Article  CAS  Google Scholar 

  7. Agami WR (2018) Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite. Phys B Condens Matter 534:17–21. https://doi.org/10.1016/j.physb.2018.01.021

    Article  CAS  Google Scholar 

  8. Kalarus J, Kogias G, Holz D, Zaspalis VT (2012) High permeability-high frequency stable MnZn ferrites. J Magn Magn Mater 324:2788–2794. https://doi.org/10.1016/j.jmmm.2012.04.011

    Article  CAS  Google Scholar 

  9. Hasirci C, Karaagac O, Köçkar H (2019) Superparamagnetic zinc ferrite: a correlation between high magnetizations and nanoparticle sizes as a function of reaction time via hydrothermal process. J Magn Magn Mater 474:282–286. https://doi.org/10.1016/j.jmmm.2018.11.037

    Article  CAS  Google Scholar 

  10. Akhtar MN, Saleem M, Khan MA (2018) Al doped spinel and garnet nanostructured ferrites for microwave frequency C and X- band applications. J Phys Chem Solids 123:260–265. https://doi.org/10.1016/j.jpcs.2018.08.007

    Article  CAS  Google Scholar 

  11. Lwin N, Othman R, Sreekantan S, Ahmad Fauzi MN (2015) Study on the structural and electromagnetic properties of Tm-substituted Mg-Mn ferrites by a solution combustion method. J Magn Magn Mater 385:433–440. https://doi.org/10.1016/j.jmmm.2015.03.046

    Article  CAS  Google Scholar 

  12. Hajalilou A, Hashim M, Ebrahimi-Kahrizsangi R, Masoudi MT (2015) Effect of milling atmosphere on structural and magnetic properties of Ni-Zn ferrite nanocrystalline. Chinese Phys B 24. https://doi.org/10.1088/1674-1056/24/4/048102

  13. Dhiman RL, Taneja SP, Reddy VR (2008) Preparation and characterization of manganese ferrite aluminates. Adv Condens Matter Phys 2008:1–7. https://doi.org/10.1155/2008/703479

    Article  CAS  Google Scholar 

  14. Khishigdemberel I, Uyanga E, Hirazawa H, Sangaa D (2018) Influence of Cu dope on the structural behavior of MgFe2O4 at various temperatures Phys B Condens Matter 544:73–78. https://doi.org/10.1016/j.physb.2018.05.032

    Article  CAS  Google Scholar 

  15. Kumar G, Chand J, Dogra A et al. (2010) Improvement in electrical and magnetic properties of mixed Mg-Al-Mn ferrite system synthesized by citrate precursor technique. J Phys Chem Solids 71:375–380. https://doi.org/10.1016/j.jpcs.2010.01.003

    Article  CAS  Google Scholar 

  16. Maalam K El, Fkhar L, Mahhouti Z, et al. (2016) The effects of synthesis conditions on the magnetic properties of zinc ferrite spinel nanoparticles. J Phys Conf Ser 758. https://doi.org/10.1088/1742-6596/758/1/012008

  17. Manouchehri S, Mohammadi Benehi ST, Yousefi MH (2016) Effect of aluminum doping on the structural and magnetic properties of mg-mn ferrite nanoparticles prepared by coprecipitation method. J Supercond Nov Magn 29:2179–2188. https://doi.org/10.1007/s10948-016-3546-7

    Article  CAS  Google Scholar 

  18. Desai I, Nadagouda MN, Elovitz M et al. (2019) Synthesis and characterization of magnetic manganese ferrites. Mater Sci Energy Technol 2:150–160. https://doi.org/10.1016/j.mset.2019.01.009

    Article  Google Scholar 

  19. Ramesh T, Shinde RS, Murthy SR (2011) Synthesis and characterization of NiCoMnCuFe1.96O4 for circulator application. J Magn Magn Mater 323:1593–1598. https://doi.org/10.1016/j.jmmm.2010.12.010

    Article  CAS  Google Scholar 

  20. Gul M, Akhtar K (2018) Synthesis and characterization of Al_doped manganese ferrite uniform particles for high-frequency applications. J Alloy Compd 765:1139–1147. https://doi.org/10.1016/j.jallcom.2018.06.168

    Article  CAS  Google Scholar 

  21. Hemeda OM, Mostafa NY, Abd Elkader OH, Ahmed MA (2014) Solubility limits in Mn-Mg ferrites system under hydrothermal conditions. J Magn Magn Mater 364:39–46. https://doi.org/10.1016/j.jmmm.2014.03.061

    Article  CAS  Google Scholar 

  22. Babu KV, Kumar GVS, Satyanarayana G et al. (2018) Microstructural and magnetic properties of Ni1−xCuxFe2O4 (x = 0.05, 0.1 and 0.15) nano-crystalline ferrites J Sci Adv Mater Devices 3:236–242. https://doi.org/10.1016/j.jsamd.2018.04.003

    Article  Google Scholar 

  23. Mansour SF (2011) Structural and magnetic investigations of sub-nano Mn-Mg ferrite prepared by wet method. J Magn Magn Mater 323:1735–1740. https://doi.org/10.1016/j.jmmm.2010.09.012

    Article  CAS  Google Scholar 

  24. Bierlich S, Reimann T, Gellersen F et al. (2019) Sintering, microwave properties, and circulator applications of textured Sc-substituted M-type ferrite thick films. J Eur Ceram Soc 39:3077–3081. https://doi.org/10.1016/j.jeurceramsoc.2019.04.014

    Article  CAS  Google Scholar 

  25. Tsay CY, Liang SC, Lei CM, Chang CC (2016) A comparative study of the magnetic and microwave properties of Al3+ and In3+ substituted Mg-Mn ferrites. Ceram Int 42:4748–4753. https://doi.org/10.1016/j.ceramint.2015.11.154

    Article  CAS  Google Scholar 

  26. Singh M, Sud SP (2001) Controlling the properties of magnesium-manganese ferrites. Mater Sci Eng B Solid-State Mater Adv Technol 83:180–184. https://doi.org/10.1016/S0921-5107(01)00514-1

    Article  Google Scholar 

  27. Liu H, Li A, Ding X et al. (2019) Magnetic induction heating properties of Mg1−xZnxFe2O4 ferrites synthesized by co-precipitation method Solid State Sci 93:101–108. https://doi.org/10.1016/j.solidstatesciences.2019.05.005

    Article  CAS  Google Scholar 

  28. Azadmanjiri J (2007) Preparation of Mn-Zn ferrite nanoparticles from chemical sol-gel combustion method and the magnetic properties after sintering. J Non Cryst Solids 353:4170–4173. https://doi.org/10.1016/j.jnoncrysol.2007.06.046

    Article  CAS  Google Scholar 

  29. De-León-Prado LE, Cortés-Hernández DA, Almanza-Robles JM, et al. (2017) Synthesis and characterization of nanosized MgxMn1−xFe2O4 ferrites by both sol-gel and thermal decomposition methods. J Magn Magn Mater 427:230–234. https://doi.org/10.1016/j.jmmm.2016.11.036

  30. Ramarao K, Rajesh Babu B, Kishore, Babu B et al. (2018) Composition dependence of structural, magnetic and electrical properties of Co substituted magnesium ferrite. Phys B Condens Matter 528:18–23. https://doi.org/10.1016/j.physb.2017.10.072

    Article  CAS  Google Scholar 

  31. Mali AV, Wandre TM, Sanadi KR et al. (2016) Synthesis, characterization and electrical properties of novel Mn substituted MgAl2O4 synthesized by sol–gel method. J Mater Sci Mater Electron 27:613–619.https://doi.org/10.1007/s10854-015-3796-3

    Article  CAS  Google Scholar 

  32. Hossain MS, Hoque SM, Liba SI, Choudhury S (2017) Effect of synthesis methods and a comparative study of structural and magnetic properties of zinc ferrite. AIP Adv 7. https://doi.org/10.1063/1.5009925

  33. Ali MA, Khan MNI, Chowdhury F-U-Z et al. (2015) Effect of sintering temperature on structural and magnetic properties of Ni0.6Zn0.4Fe2O4 ferrite: synthesized from nanocrystalline powders. JPCS 1718:2–11

    Google Scholar 

  34. Kinsler P, McCall MW (2015) The futures of transformations and metamaterials. Photonics Nanostruct - Fundam Appl 15:10–23. https://doi.org/10.1016/j.photonics.2015.04.005

    Article  Google Scholar 

  35. Smith DR, Vier DC, Koschny T, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E - Stat Nonlinear, Soft Matter Phys 71:1–11. https://doi.org/10.1103/PhysRevE.71.036617

    Article  CAS  Google Scholar 

  36. Alizad Farzin Y, Mirzaee O, Ghasemi A (2016) Synthesis behavior and magnetic properties of Mg-Ni co-doped Y-type hexaferrite prepared by sol-gel auto-combustion method. Mater Chem Phys 178:149–159. https://doi.org/10.1016/j.matchemphys.2016.04.082

    Article  CAS  Google Scholar 

  37. Bindra Narang S, Kaur P, Bahel S, Singh C (2016) Microwave characterization of Co-Ti substituted barium hexagonal ferrites in X- band. J Magn Magn Mater 405:17–21. https://doi.org/10.1016/j.jmmm.2015.12.044

    Article  CAS  Google Scholar 

  38. Liu Y, Wei SC, Wang YJ et al. (2013) Characterization of (Mg, La) substituted Ni-Zn spinel ferrite. Phys Procedia 50:43–47. https://doi.org/10.1016/j.phpro.2013.11.009

    Article  CAS  Google Scholar 

  39. Seyyed Ebrahimi SA, Azadmanjiri J (2007) Evaluation of NiFe2O4 ferrite nanocrystalline powder synthesized by a sol-gel auto-combustion method J Non Cryst Solids 353:802–804. https://doi.org/10.1016/j.jnoncrysol.2006.12.044

    Article  CAS  Google Scholar 

  40. Adli RG, Kianvash A, Hosseini MG et al. (2018) Mechanochemically synthesized NiCo2O4/Vulcan/PANI nanocomposite and investigation of its electrochemical behavior as a supercapacitor. Ceram Int 44:20049–20057. https://doi.org/10.1016/j.ceramint.2018.07.279

    Article  CAS  Google Scholar 

  41. Hajalilou A, Hashim M, Ebrahimi-Kahizsangi R et al. (2014) Synthesis of titanium carbide and TiC-SiO2 nanocomposite powder using rutile and Si by mechanically activated sintering. Adv Powder Technol 25:1094–1102. https://doi.org/10.1016/j.apt.2014.02.008

    Article  CAS  Google Scholar 

  42. Ghaffari Adli R, Kianvash A, Hosseini MG et al. (2019) Facile and scalable synthesis of ultrafine MnCo2O4 nanoparticles via mechanical alloying as supercapacitive materials. Jom 71:2396–2404. https://doi.org/10.1007/s11837-019-03486-9

    Article  CAS  Google Scholar 

  43. Hajalilou A, Mazlan SA, Shameli K (2016) A comparative study of different concentrations of pure Zn powder effects on synthesis, structure, magnetic and microwave-absorbing properties in mechanically-alloyed Ni-Zn ferrite. J Phys Chem Solids 96–97:49–59. https://doi.org/10.1016/j.jpcs.2016.05.001

    Article  CAS  Google Scholar 

  44. Rafeekali K, Maheem M, Mohammed EM (2015) Effect of sintering temperature on the structural and magnetic properties of nickel ferrite nanoparticles. NPCM 4:194–198

    Google Scholar 

  45. Rafferty A, Prescott T, Brabazon D (2008) Sintering behaviour of cobalt ferrite ceramic. Ceram Int 34:15–21. https://doi.org/10.1016/j.ceramint.2006.07.012

    Article  CAS  Google Scholar 

  46. Zabotto FL, Gualdi AJ, Eiras JA (2012) Influence of the sintering temperature on the magnetic and electric properties of NiFe2O4 ferrites. Mater Res 15:428–433. https://doi.org/10.1590/S1516-14392012005000043

    Article  CAS  Google Scholar 

  47. Ahmed MA, EL-Khawlani AA (2009) Enhancement of the crystal size and magnetic properties of Mg-substituted Co ferrite. J Magn Magn Mater 321:1959–1963. https://doi.org/10.1016/j.jmmm.2008.12.021

    Article  CAS  Google Scholar 

  48. Hajalilou, A, Kamari, HM, Shameli, K (2017). Dielectric and electrical characteristics of mechanically synthesized Ni-Zn ferrite nanoparticles. J Alloys Compd 708-813-826. https://doi.org/10.1016/j.jallcom.2017.03.030

  49. Chagas EF, Ponce AS, Prado RJ, et al. (2014) Thermal effect on magnetic parameters of high-coercivity cobalt ferrite. J Appl Phys 116. https://doi.org/10.1063/1.4890033

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Kianvash.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavkhani, R., Pourzaki, M., Kianvash, A. et al. Effect of sintering temperature and soaking time on the magnetic properties and transmission behavior of nano crystalline Mg0.8Mn0.2Al0.1Fe1.9O4. J Sol-Gel Sci Technol 99, 444–454 (2021). https://doi.org/10.1007/s10971-020-05454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05454-1

Keywords:

Navigation