Skip to main content
Log in

Structural, optical, and magnetic properties of low temperature hydrothermal synthesized (Gd, Al)-codoped ZnO nanoparticles

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Well-dispersed (Gd, Al)-codoped ZnO (Zn0.96–xGdxAl0.04O) nanoparticles (NPs) with different Gd content (x = 0–0.04) were synthesized by low temperature hydrothermal method and their structural, optical, and magnetic properties were investigated. All the as-prepared Zn0.96–xGdxAl0.04O NPs exhibit a hexagonal wurtzite structure with good crystal quality and small particle size (~3 nm). With increasing Gd-doping content from 0 to 0.04, the band gap Eg of Zn0.96–xGdxAl0.04O NPs increases from 3.46 to 3.62 eV owing to the substitution of Gd ions at Zn sites. The presence of additional intrinsic defects Zn-interstitial (Zni) and/or O-vacancy (VO) induced by Gd-doping results in the enhanced PL emission and increased PL lifetime. As compared with Al-doped ZnO, the room temperature ferromagnetic behavior of (Gd, Al)-codoped ZnO system is enhanced remarkably, which is explained based on the O-vacancy mediated exchange interactions between Gd and Al ions.

Highlights

  • Well-dispersed Zn0.96–xGdxAl0.04O (x = 0–0.04) nanoparticles were synthesized by low temperature hydrothermal method.

  • The band gap Eg was found to increase from 3.46 to 3.62 eV as the Gd-doping content increases from 0 to 0.04.

  • Enhanced PL intensity and longer PL lifetime confirmed the formation of more Zn-interstitial and O-vacancy defects generated by Gd doping.

  • O-vacancy mediated exchange interactions between Gd and Al ions improved the ferromagnetic properties of (Gd, Al)-codoped ZnO NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou H, Fang G, Yuan L, Wang C, Yang X, Huang H, Zhou C, Zhao X (2009) Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature. Appl Phys Lett 94:013503–013506

    Google Scholar 

  2. Alkuam E, Mohammed M, Chen TP (2017) Fabrication of CdS nanorods and nanoparticles with PANI for (DSSCs) dye-sensitized solar cells. Sol Energy 150:317–324

    CAS  Google Scholar 

  3. Mao Y, Ma S, Li X, Wang C, Li F, Yang X, Zhu J, Ma L (2014) Effect of Mn doping on the microstructures and sensing properties of ZnO nanofibers. Appl Surf Sci 298:109–115

    CAS  Google Scholar 

  4. Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014) Band gap engineered TiO2nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2:637–644

    CAS  Google Scholar 

  5. Abdel-Baset TA, Fang YW, Anis B, Duan CG, Abdel-Hafiez M (2016) Structural and magnetic properties of transition-metal-doped Zn1−xFexO. Nanoscale Res Lett 11:115–127

    CAS  Google Scholar 

  6. Shatnawi M, Alsmadi AM, Bsoul I, Salameh B, Alna’washi GA, Al-Dweri F, Akkad FE, Alloy J (2016) Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. Compd 655:244–252

    CAS  Google Scholar 

  7. Jadhav J, Biswas S, Alloy J (2016) Shape-controlled magnetic nanoplatelets of Ni-doped ZnO synthesized via a chemical precursor. Comp 664:71–82

    CAS  Google Scholar 

  8. Lotey GS, Singh J, Verma NK (2013) Room temperature ferromagnetism in Tb-doped ZnO dilute magnetic semiconducting nanoparticles. J Mater Sci Elec 24:3611–3616

    CAS  Google Scholar 

  9. Huang GJ, Wang JB, Zhong XL, Zhou GC, Yan HL (2007) Synthesis, structure, and room-temperature ferromagnetism of Ni-doped ZnO nanoparticles. J Mater Sci 42:6464–6468

    CAS  Google Scholar 

  10. Srinivas K, Rao SM, Reddy PV (2011) Preparation and properties of Zn0.9Ni0.1O diluted magnetic semiconductor nanoparticles. J Nanopart Res 13:817–837

    CAS  Google Scholar 

  11. Vijayaprasath G, Murugan R, Hayakawa Y, Ravi G (2016) Optical and magnetic studies on Gd doped ZnO nanoparticles synthesized by co-precipitation method. J Lumin 178:375–383

    CAS  Google Scholar 

  12. Zhou S, Potzger K, Mucklich A, Eichhorn F, Helm M, Skorupa W, Fassbender J (2008) Structural and magnetic properties of Tb implanted ZnO single crystals. Nucl Instrum Methods Phys Res B 266:589–593

    CAS  Google Scholar 

  13. Alo DQ, Zhang J, Yang GJ, Zhang JL, Shi ZH, Qi J, Zhang ZH, Xue DS (2010) Ferromagnetism in ZnO Nanoparticles Induced by doping of a nonmagnetic element: Al. J Phys Chem C 114:13477–13481

    Google Scholar 

  14. Chawla S, Jayanthi K, Kotnala RK (2009) Room-temperature ferromagnetism in Li-dopedp-type luminescent ZnO nanorods. Phys Rev B 79:125204–125210

    Google Scholar 

  15. Liu YY, Zhou W, Wu P (2014) Ferromagnetism induced by the charge transfer in Al-doped ZnO nanoparticles. J Alloy Compd 615:401–405

    CAS  Google Scholar 

  16. Pan H, Yi JB, Shen L, Wu RQ, Yang JH, Lin JY, Feng YP, Ding J, Van LH, Yin JH (2007) Room-temperature ferromagnetism in carbon-doped ZnO. Phys Rev Lett 99:127201–127204

    CAS  Google Scholar 

  17. Li LY, Cheng YH, Luo XG, Liu H, Wen GH, Zheng RK, Ringer SP (2010) Room-temperature ferromagnetism and the scaling relation between magnetization and average granule size in nanocrystalline Zn/ZnO core–shell structures prepared by sputtering. Nanotechnology 21:145705–145710

    CAS  Google Scholar 

  18. Venkatesan M, Fitzgerald CB, Lunney JG, Coey JMD (2006) Anisotropic ferromagnetism in substituted zinc oxide. Phys Rev Lett 93:177206–177209

    Google Scholar 

  19. Yi JB, Lim CC, Xing GZ, Fan HM, Van LH, Huang SL, Yang KS, Huang XL, Qin XB, Wang BY, Wu T, Wang L, Zhang HT, Gao XY, Liu T, Wee ATS, Feng YP, Ding J (2010) Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO. Phys Rev Lett 104:137201–137204

    CAS  Google Scholar 

  20. Chauhan RN, Tiwari N, Anandc RS, Kumar J (2016) Development of Al-doped ZnO thin film as a transparent cathode and anode for application in transparent organic light-emitting diodes. RSC Adv 6:86770–86781

    CAS  Google Scholar 

  21. Dong J, Zhao YH, Shi JJ, Wei HY, Xiao JY, Xu X, Luo JH, Xu J, Li DM, Luo YH, Meng QB (2014) Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification. Chem Commun 81:13381–13384

    Google Scholar 

  22. Vunnam S, Ankireddy K, Kellar J, Cross W (2014) Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing. Nanotechnology 25:195301–195309

    CAS  Google Scholar 

  23. Zhang DB, Li HZ, Zhang BP, Liang DD, Xia M (2017) Hybrid-structured ZnO thermoelectric materials with high carrier mobility and reduced thermal conductivity. RSC Adv 7:10855–10864

    CAS  Google Scholar 

  24. Zhang T, Song LX, Chen ZZ, Shi EW, Chao LX, Zhang HW (2006) Origin of ferromagnetism of (Co,Al)-codoped ZnO from first-principles calculations. Appl Phys Lett 89:172502–172504

    Google Scholar 

  25. Chang GS, Kurmaev EZ, Boukhvalov DW, Finkelstein LD, Bieber H, Colis S, Dinia A (2009) J Phys: Condens Matter 21:056002–056006

    CAS  Google Scholar 

  26. Tariq M, Li Y, Li WX, Yu ZR, Li JM, Hu YM, Zhu MY, Jin HM, Liu Y, Li YB, Skotnicova K (2019) Structural, ferromagnetic, and optical properties of Fe and Al co-doped ZnO diluted magnetic semiconductor nanoparticles synthesized under high magnetic field. Adv Manuf 7:248–255

    CAS  Google Scholar 

  27. Yi XY, Ma CY, Yuan F, Wang N, Qin FW, Hu BC, Zhang QY (2017) Structural, morphological, photoluminescence and photocatalytic properties of Gd-doped ZnO films. Thin Solid Films 636:339–345

    CAS  Google Scholar 

  28. Das S, Das S, Roychowdhury A, Das D, Sutradhar S (2017) Effect of Gd doping concentration and sintering temperature on structural, optical, dielectric and magnetic properties of hydrothermally synthesized ZnO nanostructure. J Alloy Compd 708:231–246

    CAS  Google Scholar 

  29. Nefedov VI, Salyn YV, Leonhardt G, Scheibe R (1977) A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy. J Electron Spectrosc Relat Phenom 10:121–124

    CAS  Google Scholar 

  30. Zeng W, Yang X, Shang M, Xu X, Yang W, Hou H (2016) Fabrication of Mg-doped ZnO nanofibers with high purities and tailored band gaps. Ceram Int 42:10021–10029

    CAS  Google Scholar 

  31. Chen M, Wang X, Yu YH, Pei L, Bai XD, Sun C, Hunag RF, Wen LS (2000) X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci 158:134–140

    CAS  Google Scholar 

  32. Naseri MG, Saion EB, Hashim M, Shaari AH, Ahangar HA (2011) Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Commun 151:1031–1103

    CAS  Google Scholar 

  33. Salehizadeh SA, Melo BMG, Freire FNA, Valente MA, Graça MPF, Non Cryst J (2016) Solids 443:65–74

    CAS  Google Scholar 

  34. Kaltchev WT, Tysoe M (1999) An infrared spectroscopic investigation of thin alumina films: measurement of acid sites and surface reactivity. Surf Sci 430:29–36

    CAS  Google Scholar 

  35. Pandey G, Dixit S, Shrivastava AK (2015) Effect of Gd3+ doping and reaction temperature on structural and optical properties of CdS nanoparticles. Mat Sci Eng B 200:59–66

    CAS  Google Scholar 

  36. Beura R, Thangadurai P (2017) Structural, optical and photocatalytic properties of graphene-ZnO nanocomposites for varied compositions. J Phys Chem Solids 102:168–177

    CAS  Google Scholar 

  37. Chithira PR, John TT (2017) The influence of vacuum and annealing on the visible luminescence in ZnO nanoparticles. J Lumin 185:212–218

    CAS  Google Scholar 

  38. Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46

    CAS  Google Scholar 

  39. Vijayaprasath G, Murugan R, Mahalingam T, Hayakawa Y, Ravi G (2015) Enhancement of ferromagnetic property in rare earth neodymium doped ZnO nanoparticles. Ceram Int 41:10607–10615

    CAS  Google Scholar 

  40. Mariappan R, Ponnuswamy V, Suresh P, Suresh R, Ragavendar M (2013) Nanostructured GdxZn1−xO thin films by nebulizer spray pyrolysis technique: Role of doping concentration on the structural and optical properties. Superlattice Microst 59:47–59

    CAS  Google Scholar 

  41. Burstein E (1954) Anomalous optical absorption limit in InSb. Phys Rev 93:632–633

    CAS  Google Scholar 

  42. Lima SAM, Sigoli FA, Jafelicci MJ, Davolos MR (2001) Luminescent properties and lattice defects correlation on zinc oxide. Int J Inorg Mater 3:749–754

    CAS  Google Scholar 

  43. Repp S, Weber S, Erdem E (2016) Defect evolution of nonstoichiometric ZnO quantum dots. J Phys Chem C 120:25124–25130

    CAS  Google Scholar 

  44. Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao CNR (2006) Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys Rev B 74:161306–161309

    Google Scholar 

  45. Xu M, Yuan H, You B, Zhou PF, Dong CJ, Duan MY (2014) Structural, optical, and magnetic properties of (Co, Cu)-codoped ZnO films with different Co concentrations. J Appl Phys 115:093503–093509

    Google Scholar 

  46. Venkatesh S, Franklin JB, Ryan MP, Lee JS, Ohldag H, McLachlan MA, Alford NM, Roqan IS (2015) Defect-band mediated ferromagnetism in Gd-doped ZnO thin films. J Appl Phys 117:013913–013917

    Google Scholar 

  47. Lin Y, Jiang DM, Lin F, Shi WZ, Ma XM (2007) Fe-doped ZnO magnetic semiconductor by mechanical alloying. J Alloy Compd 436:30–33

    CAS  Google Scholar 

  48. Coey JMD, Venkatesan M, Fitzgerald CB (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4:173–179

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11704152 and 11774134).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Wang or Jie Hua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cui, W., Zhu, L. et al. Structural, optical, and magnetic properties of low temperature hydrothermal synthesized (Gd, Al)-codoped ZnO nanoparticles. J Sol-Gel Sci Technol 93, 193–201 (2020). https://doi.org/10.1007/s10971-019-05160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05160-7

Keywords

Navigation