Skip to main content

Advertisement

Log in

Structural characterization of bioactive glasses by solid state NMR

  • Invited Review: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance (NMR) spectroscopy offers an element-selective, inherently quantitative and experimentally very flexible approach for the structural elucidation of non-crystalline materials. The present review introduces the basic concepts of this technique, highlighting the use of advanced NMR methodology for characterizing short- and intermediate range order in bioactive glass systems. The current state of the literature in this field is summarized in a comprehensive manner. NMR can give clear-cut and quantitative answers about the extent of network polymerization, the spatial distribution of the network former and network modifier species, and the structural roles of Group III elements introduced into these networks. These results facilitate our understanding of the influence of bioglass compositions upon the dissolution kinetics and bioactivities of these glasses. A particular mission of this review is to highlight the utility of non-routine, more advanced experimentation, in the hope of their increased usage and circulation in future applications.

The main six nuclear isotopes used in obtaining high-resolution magic-angle spinning NMR spectra for the structural characterization of bioactive glasses

Highlights

  • This is the first comprehensive review on NMR of bioglasses.

  • The focus lies on advanced solid state NMR experimentation with the goal of establishing structure-property correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Hench LL, Splinter RJ, Greenlee TK, Allen WC (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 2:117–141

    Article  Google Scholar 

  2. Hench LL (1991) Bioceramics. From Concept to Clinic. J Am Ceram Soc 74:1487–1510

    Article  CAS  Google Scholar 

  3. Hench LL (2006) The story of bioglass. J Mater Sci Mater Med 17:1967–1978

    Article  CAS  Google Scholar 

  4. Montazerian M, Zanotto ED (2017) Bioactive glass ceramics: processing, properties, and applications. RSC Smart. Materials 23:27–60

    Google Scholar 

  5. Jones JR, Clare AG Bio-glasses: An introduction Wiley 2012 and references therein

  6. Hench LL, Jones JR (2015) Bioactive glasses: Frontiers and challenges. Front Bioeng Biotechnol 3:194 PMC–4663244

    Article  Google Scholar 

  7. Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31:1245–1256

    Article  CAS  Google Scholar 

  8. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373

    Article  CAS  Google Scholar 

  9. Yu H, Peng J, Xu Y, Chang J, Li H (2016) Bioglass activated skin tissue engineering constructs for wound healing. ACS Appl Mater Interf 13:703–715

    Article  CAS  Google Scholar 

  10. Naseri S, Lepry WC, Nazhat SN (2017) Bioglasses in wound healing. Hope Or hype? J Mater Chem B 5:6167–6174

    Article  CAS  Google Scholar 

  11. Siqueira RL, Peitl O, Zanotto ED (2011) Gel derived SiO2-CaO-Na2O-P2O5 bioactive powders: synthesis and in vitro bioactivity. Mater Sci Engin C 31:983–991

    Article  CAS  Google Scholar 

  12. Arcos D, Vallet-Regi M (2010) Sol-gel silica based biomaterials and bone tissue regeneration. Acta Biomater 6:2874–2888

    Article  CAS  Google Scholar 

  13. Wei GF, Yan XX, Yi J, Zhao LZ, Zhou L, Wang YH, Yu CZ (2011) Synthesis and in-vitro bioactivity of mesoporous bioactive glasses with tunable macropores. Micro Mesopor Mater 143:157–165

    Article  CAS  Google Scholar 

  14. Combes C, Rey C (2010) Amorphous calcium phosphates. Syntheses, properties and their uses in biomaterials. Acta Biomater 69:3362–3378

    Article  CAS  Google Scholar 

  15. Assink L, Kay L (1991) Study of sol-gel chemical reaction kinetics by NMR. Ann Rev Mater Sci 1991 21:491–513

    Article  CAS  Google Scholar 

  16. Bonhomme C, Coelho C, Baccile N, Gervais C, Azais T, Babonneau F (2007) Advanced solid state NMR techniques for the characterization of sol-gel materials. Acc Chem Res 40:738–746

    Article  CAS  Google Scholar 

  17. Babonneau F, Bonhomme C (2015) Solid state NMR characterization of sol-gel materials: Recent advances, The Sol-Gel Handbook, Levy D, Zayat M, (eds). vol III. Wiley VCH, pp. 651–673

  18. Smith ME, Holland D (2004) Atomic scale structure of gel materials by solid state NMR. In: Sakka S (ed) Handbook of sol-gel science and technology, vol II. Klüwer Acad Publ, pp. 35–64

  19. Eckert H (1992) Structural characterization of non-crystalline solids and glasses by solid state NMR. Prog NMR Spectrosc 24:159–293

    Article  CAS  Google Scholar 

  20. Edén M (2012) NMR studies of oxide glasses. Ann Rep Prog Chem Sect C 108:177–231

    Article  CAS  Google Scholar 

  21. Charpentier T, Menziani MC, Pedone A (2013) Computational simulations of solid state NMR spectra: A new era in structure determination of oxide glasses. RSC Adv 3:10550–10578

    Article  CAS  Google Scholar 

  22. Charpentier T (2011) The PAW/GIPAW approach of computing NMR parameters: a new dimension added to NMR studies of solids. Solid State Nucl Magn Reson 40:1–20

    Article  CAS  Google Scholar 

  23. Pedone A (2017) What can we learn from molecular dynamics simulations of bioactive glasses. Adv Struct Mater 53:119–145

    Article  Google Scholar 

  24. Massiot D, Messinger RJ, Cadars S, Deschamps M, Montouillot V, Pellerin N, Veron E, Allix M, Florian P, Fayon F (2013) Topological, geometrical and chemical order in materials: Insights from solid state NMR. Acc Chem Res 46:1945–1984

    Article  CAS  Google Scholar 

  25. Eckert H, Elbers S, Epping JD, Janssen M, Kalwei M, Strojek W, Voigt U (2005) Dipolar solid state NMR approaches towards medium-range structure in glasses. Top Curr Chem 246:195–233

    Article  CAS  Google Scholar 

  26. Bonhomme C, Gervais C, Laurencin D (2014) Recent NMR developments applied to organic-inorganic materials. Prog Nucl Magn Reson Spectrosc 77:1–48

    Article  CAS  Google Scholar 

  27. Dey P, Pal SK, Sarkar R (2014) Effect of alumina addition to 45S5 glass. Transact Ind Ceram Soc 73:105–109

    Article  CAS  Google Scholar 

  28. Watts SJ, Hill RG, O’Donnell MD, Law RV (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 356:517–524

    Article  CAS  Google Scholar 

  29. O’ Donnell MD, Hill RG (2010) Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater 6:2382–2385

    Article  CAS  Google Scholar 

  30. Brauer DS (2015) Bioactive glasses –structure and properties. Angew Chem 54:4160–4181

    Article  CAS  Google Scholar 

  31. Rivadeneira J, Gorustovich A (2016) Bioactive glasses as delivery systems for antimicrobial agents. J Appl Microbiol 122:1424–1437

    Article  Google Scholar 

  32. Ylänen H (2017) Bioactive glasses: materials, properties and applications. Woodhead publishing series in biomaterials

  33. Boccaccini AR, Brauer DS, Hupa L (eds) (2016) Bioactive glasses: Fundamentals, technology and applications. Royal Society of Chemistry

  34. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface structure changes in bioactive glass ceramic J Biomed Mater Res 24:721–734

    Article  CAS  Google Scholar 

  35. Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro by SBF solution? Biomater 30:2175–2179

    Article  CAS  Google Scholar 

  36. Oliver WC, Pharr GM (1992) Nanoindentation in materials research: Past, present, and future. J Mater Res 7:1564

    Article  CAS  Google Scholar 

  37. Zachariasen WH (1932) The atomic arrangement in glass. J Am Chem Soc 54:3841–3851

    Article  CAS  Google Scholar 

  38. Edén M (2011) The split network analysis for exploring composition-structure correlations in multi-component glasses: I. Rationalizing bioactivity-composition trends of bioglasses. J Non-Cryst Solids 357:1595–1602

    Article  CAS  Google Scholar 

  39. Duer MJ (2004) Introduction into solid state NMR spectroscopy, Blackwell, London

  40. Levitt MH (2008) Spin dynamics. Basics of nuclear magnetic resonance, J Wiley & Sons

  41. Eckert H (2017) Medium-range order in oxide glasses. In: Dronskowski, Stein, Kikkawa (eds) Handbook of solid state chemistry and materials science. J Wiley & Sons, pp. 93–137

  42. Templin M, Wiesner U, Spiess HW (1997) Multinuclear solid state NMR studies of inorganic-organic hybrid materials. Adv Mater 9:814–817

    Article  CAS  Google Scholar 

  43. Eckert H (2010) Short and medium range order in ion conducting glasses studied by modern solid state NMR techniques. Z Phys Chem 224:1591–1653

    Article  CAS  Google Scholar 

  44. Ernst RR, Anderson WA (1966) Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Inst 37:93–102

    Article  CAS  Google Scholar 

  45. Mathew R, Stevensson B, Tilocca A, Edén M (2014) Toward a rational design of bioactive glasses with optimal structural features: Composition-structure correlations unveiled by solid-state NMR and MD simulations. J Phys Chem B 118:833–844

    Article  CAS  Google Scholar 

  46. Stone NJ (2016) Nuclear electric quadrupole moments. At Data Nucl Tables 111-112:1–28

    Article  CAS  Google Scholar 

  47. Freude D, Haase J (1993) Quadrupole effects in solid state nuclear magnetic resonance. NMR Basic Princ Progress 29:1–90

    Article  CAS  Google Scholar 

  48. D’Espinose de Lacaillerie JB, Fretigny C, Massiot D (2008) MAS NMR spectra of quadrupolar nuclei in disordered solids: the Czjzek model. J Magn Reson 192:244–251

    Article  CAS  Google Scholar 

  49. Medek A, Harwood JS, Frydman L (1995) Multiple-quantum magic-angle spinning NMR: A new method for the study of quadrupolar nuclei in solids. J Am Chem Soc 117:12779–12787

    Article  CAS  Google Scholar 

  50. Amoureux JP, Fernandez C, Steuernagel S (1996) Z Filtering in MQMAS NMR. J Magn Reson A 123:116–118

    Article  CAS  Google Scholar 

  51. Schurko RW (2013) Ultra-wideline solid-state NMR spectroscopy. Acc Chem Res 46:1985–1995

    Article  CAS  Google Scholar 

  52. O’Dell LA (2013) The WURST kind of pulses in solid state NMR. Solid State Nucl Magn Reson 55-56:28–41

    Article  CAS  Google Scholar 

  53. Van Vleck JH (1948) The dipolar broadening of magnetic resonance lines in crystals. Phys Rev 74:1168–1183

    Article  Google Scholar 

  54. Gullion T, Schaefer J (1989) Rotational echo double resonance NMR. J Magn Reson 81:196–200

    CAS  Google Scholar 

  55. Grey CP, Veeman WS, Vega AJ (1993) Rotational echo 14N/13C/1H triple resonance solid state nuclear magnetic resonance: A probe of 13C-14N internuclear distances. J Chem Phys 98:7711–7724

    Article  CAS  Google Scholar 

  56. Gullion T, Vega A (2005) Measuring heteronuclear dipolar couplings for I = 1/2, S > 1/2 spin pairs by REDOR and REAPDOR NMR. Prog Nucl Magn Reson Spectrosc 47:123–126

    Article  CAS  Google Scholar 

  57. Bertmer M, Eckert H (1999) Dephasing of spin echoes by multiple heteronuclear dipolar interactions in rotational echo double resonance NMR experiments. Solid State Nucl Magn Reson 15:139–152

    Article  CAS  Google Scholar 

  58. Fayon F, Duée C, Poumeyrol T, Allix M, Massiot D (2013) Evidence of nanometric-sized phosphate clusters in bioactive glasses as revealed by solid-state 31P NMR. J Phys Chem C 117:2283–2288

    Article  CAS  Google Scholar 

  59. Feike M, Demco DE, Graf R, Gottwald J, Hafner S, Spiess HW (1996) Broadband multiple-quantum NMR spectroscopy. J Magn Reson A 122:214–221

    Article  CAS  Google Scholar 

  60. Geen H, Titman JJ, Gottwald J, Spiess HW (1994) Solid state proton multiple-quantum NMR with fast magic angle spinning. Chem Phys Lett 227:79–86

    Article  CAS  Google Scholar 

  61. Saalwächter K, Lange F, Matyjaszewski K, Huang CF, Graf R (2011) BaBaxy16: Robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies. J Magn Reson 212:204–215

    Article  CAS  Google Scholar 

  62. Mathew R, Turdean-Ionescu C, Stevensson B, Izquierdo-Barba I, Garcia A, Acros D, Vallet-Regi M, Edén M (2013) Direct probing of the phosphate ion distribution in bioactive silicate glasses by solid-state NMR: Evidence for transitions between random/clustered scenarios. Chem Mater 25:1877–1885

    Article  CAS  Google Scholar 

  63. Wasylishen R (2012) Indirect nuclear spin-spin coupling tensors. In: Harris RK, Wasylishen RE, (eds) Encyclopedia of NMR spectroscopy, J Wiley & Sons, vol. 4. pp. 2075–2083

  64. Franke D, Hudalla C, Eckert H (1992) Spectral editing in MAS NMR of aprotic solids: 31P-113Cd cross-polarization and heteronuclear double-quantum filtering studies in II-IV-V, semiconductor alloys. Solid State Nucl Magn Reson 1:297–306

    Article  Google Scholar 

  65. Franke D, Hudalla C, Eckert H (1992) Heteronuclear X-Y double quantum MAS NMR in crystalline inorganic solids. Solid State Nucl Magn Reson 1:33–40

    Article  CAS  Google Scholar 

  66. Coelho C, Babonneau F, Azais T, Bonhomme-Coury L, Maquet J, Laurent G, Bonhomme C (2006) Chemical bonding in silicophosphate gels: Contribution of dipolar and J-derived solid state NMR techniques. J Sol Gel Sci Technol 40:181–189

    Article  CAS  Google Scholar 

  67. Coelho C, Azais T, Bonhomme C, Bonhomme-Coury L, Boissière C, Laurent G, Massiot D (2008) Efficiency of dipolar and J-derived solid-state NMR techniques for a new pair of nuclei {31P,29Si}. Towards the characterization of Si-O-P mesoporous materials. Compt Rend Chim 11:387–397

    Article  CAS  Google Scholar 

  68. Lesage A, Bardet M, Emsley L (1999) Through-bond carbon−carbon connectivities in disordered solids by NMR. J Am Chem Soc 121:10987–10993

    Article  CAS  Google Scholar 

  69. Guerry P, Smith ME, Brown SP (2009) 31P MAS refocused INADEQUATE spin-echo (REINE) NMR spectroscopy: Revealing J coupling and chemical shift two-dimensional correlations in disordered solids. J Am Chem Soc 131:11861–11874

    Article  CAS  Google Scholar 

  70. Stevensson B, Mathew R, Yu Y, Edén M (2015) Two heteronuclear dipolar results at the price of one: Quantifying Na/P contacts in phosphosilicate glasses and biomimetic hydroxy-apatite. J Magn Reson 251:52–56

    Article  CAS  Google Scholar 

  71. Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand JO, Bujoli B, Gan Z, Hoatson G (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76

    Article  CAS  Google Scholar 

  72. Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: A general simulation program for solid-state NMR spectroscopy. J Magn Reson 147:296–330

    Article  CAS  Google Scholar 

  73. Perras FA, Widdifield CM, Bryce DL (2012) QUEST—QUadrupolar exact SofTware: A fast graphical program for the exact simulation of NMR and NQR spectra for quadrupolar nuclei. Solid State Nucl Magn Reson 45-46:36–44

    Article  CAS  Google Scholar 

  74. Gauss J, Stanton (2002) Electron-correlated approaches for the calculation of NMR chemical shifts, in Advances in chemical physics. Prigogine L, Rice SA (eds), John Wiley & Sons, vol. 123. pp. 355-422

  75. Kaupp M, Malkin VG (2004) Calculation of NMR and EPR parameters, Wiley-VCH Weinheim, Germany

  76. Pedone A, Charpentier T, Malavasi G, Menziani MC (2010) New insights into the atomic structure of 45S5 bioglass by means of solid-state NMR spectroscopy and accurate first-principles simulations. Chem Mater 22:5644–5652

    Article  CAS  Google Scholar 

  77. Linati L, Lusvardi G, Malavasi G, Menabue L, Menziani MC, Mustarelli P, Pedone A, Segre U (2008) Medium-range order in phospho-silicate bioactive glasses: Insights from MAS-NMR spectra, chemical durability experiments and molecular dynamics simulations. J Non-Cryst Solids 354:84–89

    Article  CAS  Google Scholar 

  78. Elgayar I, Aliev AE, Boccaccini AR, Hill RG (2005) Structural analysis of bioactive glasses. J Non-Cryst Solids 351:173–183

    Article  CAS  Google Scholar 

  79. Mathew R, Stevensson B, Edén M (2015) Na/Ca Intermixing around silicate and phosphate groups in bioactive phosphosilicate glasses revealed by heteronuclear solid-state NMR and molecular dynamics simulations. J Phys Chem B 119:5701–5715

    Article  CAS  Google Scholar 

  80. Grussaute H, Montagne L, Palavit G, Bernard GL (2000) Phosphate speciation in SiO2-CaO-Na2O-P2O5 and SiO2-TiO2-Na2O-P2O5 glasses. J Non-Cryst Solids 263-264:312–317

    Article  Google Scholar 

  81. Lockyer MWG, Holland D, Dupree R (1995) NMR investigation of the structure of some bioactive and related glasses. J Non-Cryst Solids 188:207–219

    Article  CAS  Google Scholar 

  82. Li A, Ren H, Cui Y, Yang C, Zhou X, Lin H, Qiu D (2017) Detailed structure of a new bioactive glass composition for the design of bone repair materials. J Non-Cryst Solids 475:10–14

    Article  CAS  Google Scholar 

  83. Stevensson B, Mathew R, Edén M (2014) Assessing the phosphate distribution in bioactive phosphosilicate glasses by 31P solid-state NMR and molecular dynamics simulations. J Phys Chem B 118:8863–8876

    Article  CAS  Google Scholar 

  84. Mercier C, Follet-Houttemane C, Pardini A, Revel B (2011) Influence of P2O5 content on the structure of SiO2-Na2O-CaO-P2O5 bioglasses by 29Si and 31P MAS-NMR. J Non-Cryst Solids 357:3901–3909

    Article  CAS  Google Scholar 

  85. O’Donnell MD, Watts SJ, Law RV, Hill RG (2008) Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties - Part I: NMR. J Non-Cryst Solids 354:3554–3560

    Article  CAS  Google Scholar 

  86. Leonova E, Izquierdo-Barba I, Arcos D, López-Noriega A, Hedin N, Vallet-Regí M, Edén M (2008) Multinuclear solid-state NMR studies of ordered mesoporous bioactive glasses. J Phys Chem C 112:5552–5562

    Article  CAS  Google Scholar 

  87. Carta D, Newport RJ, Knowles JC, Smith ME, Guerry P (2011) Sol-gel produced sodium calcium phosphosilicates for bioactive applications: Synthesis and structural characterisation. Mater Chem Phys 130:690–696

    Article  CAS  Google Scholar 

  88. Ting HK, Page SJ, Poologasundarampillai G, Chen S, Yu B, Hanna JV, Jones JR (2017) Phosphate content affects structure and bioactivity of sol-gel silicate bioactive glasses. Int J Appl Glass Sci 8:372–382

    Article  CAS  Google Scholar 

  89. Zhao S, Li Y, Li D (2011) Synthesis of CaO-SiO2-P2O5 mesoporous bioactive glasses with high P2O5 content by evaporation induced self assembly process. J Mater Sci: Mater Med 22:201–208

    CAS  Google Scholar 

  90. Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass. J Mater Chem 19:1276–1282

    Article  CAS  Google Scholar 

  91. Coleman NJ, Bellantone M, Nicholson JW, Mendham AP (2007) Textural and structural properties of bioactive glasses in the system CaO-SiO2 Ceramics. Silikaty 51:1–8

    CAS  Google Scholar 

  92. Lucas-Girot A, Mezahi FZ, Mami M, Oudadesse H, Harabi A, Le Floch M (2011) Sol-gel synthesis of a new composition of bioactive glass in the quaternary system SiO2-CaO-Na2O-P2O5: Comparison with melting method. J Non-Cryst Solids 357:3322–3327

    Article  CAS  Google Scholar 

  93. Ben-Arfa BAE, Miranda Salvado IM, Ferreira JMF, Pullar RC (2017) A hundred times faster: Novel, rapid sol-gel synthesis of bio-glass nanopowders (Si-Na-Ca-P system, Ca:P = 1.67) without aging. Int J Appl Glass Sci 8:337–343

    Article  CAS  Google Scholar 

  94. Zagrajczuk B, Dziadek M, Olejniczak Z, Cholewa-Kowalska K, Laczka M (2017) Structural and chemical investigation of the gel-derived bioactive materials from the SiO2–CaO and SiO2-CaO-P2O5 systems. Ceram Int 43:12742–12754

    Article  CAS  Google Scholar 

  95. Dziadek M, Zagrajczuk B, Jelen P, Olejniczak Z, Cholewa-Kowalska K (2016) Structural variations of bioactive glasses obtained by different synthesis routes. Ceram Int 42:14700–1470

    Article  CAS  Google Scholar 

  96. Matsuya S, Matsuya Y (1999) Structure of bioactive glass and its application to glass ionomer cements. Dent Mater 18:155–166

    Article  CAS  Google Scholar 

  97. Ren J, Doerenkamp C, Eckert H (2016) High Surface area mesoporous GaPO4-SiO2 sol-gel glasses: Structural investigation by advanced solid state NMR. J Phys Chem C 120:1758–1769

    Article  CAS  Google Scholar 

  98. Li Y, Placek LM, Coughlan A, Laffir FR, Pradhan D, Mellott NP, Wren AW (2015) Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2–TiO2–CaO Na2O/SrO bioactive glass. J Mater Sci: Mater Med 26:85/1–12

    Google Scholar 

  99. Fujikura K, Karpukhina N, Kasuga T, Brauer DS, Hill RG, Law RV (2012) Influence of strontium substitution on structure and crystallisation of Bioglass® 45S5. J Mater Chem 22:7395–7402

    Article  CAS  Google Scholar 

  100. Hill RG, Stamboulis A, Law RV, Clifford A, Towler MR, Crowley C (2004) The influence of strontium substitution in fluoroapatite glasses and glass ceramics J Non-Cryst Solids 336:223–229

    Article  CAS  Google Scholar 

  101. Fredholm YC, Karpukhina N, Brauer DS, Jones JR, Law RV, Hill RG (2012) Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. J Mater Chem 22:7395–7402

    Article  CAS  Google Scholar 

  102. Bonhomme C, Gervais C, Folliet N, Pourpoint F, Coelho Diogo C, Lao J, Jallot E, Lacroix J, Nedelec J-M, Iuga D, Hanna JV, Smith ME, Xiang Y, Du J, Laurencin D (2012) 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: Antiosteoporotic pharmaceuticals and bioactive glasses. J Am Chem Soc 134:12611–12628

    Article  CAS  Google Scholar 

  103. Galliano PG, López JMP, Varetti EL, Sobrados I, Sanz J (1994) Analysis by nuclear magnetic resonance and Raman spectroscopies of the structure of bioactive alkaline-earth silicophosphate glasses. Mater Res Bull 29:1297–1306

    Article  CAS  Google Scholar 

  104. Souza MT, Crovace MC, Schröder C, Eckert H, Peitl O (2013) Effect of magnesium ion incorporation on the thermal stability, dissolution behavior and bioactivity in bioglass-derived glasses. J Non-Cryst Solids 382:57–65

    Article  CAS  Google Scholar 

  105. Watts SJ, Hill RG, O’Donnell MD, Law RV (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 356:517–524

    Article  CAS  Google Scholar 

  106. Aguiar H, Solla EL, Serra J, González P, León B, Malz F, Jäger C (2008) Raman and NMR study of bioactive Na2O-MgO-CaO-P2O5-SiO2 glasses. J Non-Cryst Solids 354:5004–5008

    Article  CAS  Google Scholar 

  107. Oliveira JM, Correia RN, Fernandes MH, Rocha J (2000) Influence of the CaO/MgO ratio on the structure of phase separated glasses: a solid state 31P and 29Si NMR study. J Non-Cryst Solids 265:221–229

    Article  CAS  Google Scholar 

  108. Youngman R (2018) NMR Spectroscopy in glass science: A review of the elements, Materials 11:476

    Article  Google Scholar 

  109. Limbach R, Karlsson S, Scannell G, Mathew R, Edén M, Wondraczek L (2017) The effect of TiO2 on the structure of Na2O-CaO-SiO2 glasses and its implications for thermal and mechanical properties. J Non-Cryst Solids 471:6–18

    Article  CAS  Google Scholar 

  110. Placek LM, Keenan TJ, Li Y, Yatongchai C, Pradhan D, Boyd D, Mellott NP, Wren AW (2016) Investigating the effect of TiO2 on the structure and biocompatibility of bioactive glass. J Biomed Mater Res - Part B Appl Biomater 104:1703–1712

    Article  CAS  Google Scholar 

  111. Wren AW, Keenan T, Coughlan A, Lafir FR, Boyd D, Towler MR, Hall MM (2013) Characterization of Ga2O3-Na2O-CaO-ZnO-SiO2 bioglasses. J Mater Sci 2013 48:3999–4007

    CAS  Google Scholar 

  112. Kilcup N, Gaynard S, Werner-Zwanziger U, Tonkopi E, Hayes J, Boyd D (2015) Stimulation of apoptotic pathways in liver cancer cells: An alternative perspective on the biocompatibility and the utility of biomedical glasses. J Biomater Appl 30:1445–1459

    Article  CAS  Google Scholar 

  113. Linati L, Lusvardi G, Malavasi G, Menabue L, Menziani MC, Mustarelli P, Segre U (2005) Qualitative and quantitative structure-property relationships analysis of multicomponent potential bioglasses. J Phys Chem B 109:4989–4998

    Article  CAS  Google Scholar 

  114. Lopes JH, Magalhães A, Mazali IO, Bertran CA (2014) Effect of niobium oxide on the structure and properties of melt-derived bioactive glasses. J Am Ceram Soc 97:3843–3852

    Article  CAS  Google Scholar 

  115. Alhalawani AM, Towler MR (2017) novel tantalum-containing bioglass Part I. Structure and solubility. Mater Sci Engin C 72:202–210

    Article  CAS  Google Scholar 

  116. Montazerian M, Schneider JF, Yekta BE, Marghussian VK, Rodrigues AM, Zanotto ED (2015) Sol-gel synthesis, structure, sintering and properties o bioactive and inert nano-apatite-zirconia glass-ceramics. Ceram Int 41:11024–11045

    Article  CAS  Google Scholar 

  117. Zhang XF, Kehoe S, Adhi SK, Ajithkumar TG, Moane S, O’Shea H, Boyd D (2011) Composition-structure-property (Zn2+ and Ca2+ ion release) evaluation of Si-Na-Ca-Zn-Ce glasses: Potential components for nerve guidance conduits. Mater Sci Engin C 31:669–676

    Article  CAS  Google Scholar 

  118. Balasubramanian P, Buettner T, Miguez PV, Boccaccini AR (2018) Boron-containing bioactive glasses in bone and soft-tissue engineering. J Eur Ceram Soc 38:855–869

    Article  CAS  Google Scholar 

  119. Wu C, Chang J (2014) Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release 193:282–295

    Article  CAS  Google Scholar 

  120. Rico P, Rodrigo-Navarro A, Salmerón-Sánchez M (2015) Borax-loaded PLLA for promotion of myogenic differentiation. Tissue Eng A 21:2662–2672

    Article  CAS  Google Scholar 

  121. Sych O, Gunduz O, Pinchuk N, Stan GE, Oktar (2016) Tissue engineering scaffolds from La2O3-hydroxyapatite/boron glass composites. J Austral Ceram Soc 52:103–110

    CAS  Google Scholar 

  122. Pan HB, Zhao XL, Zhang X, Zhang KB, Li LC, Li W, Lam W, Lu WW, Wang DP, Huang WH, Lin KL, Chang J (2010) Strontium borate glass: potential biomaterial for bone regeneration. J R Soc Interf 7:1025–1031

    Article  CAS  Google Scholar 

  123. Wu C, Miron R, Sculean A, Kaskel S, Doert T, Schulze R, Zhang Y (2011) Proliferation, differentiation and gene expression of osteoblasts in boron-containing bioglasses associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials 32:7068–7078

    Article  CAS  Google Scholar 

  124. Wu C, Chang J (2014) Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release 193:282–295

    Article  CAS  Google Scholar 

  125. Yang Q, Chen S, Shi H, Xiao H, Ma Y (2015) In vitro study of improved wound-healing effect of bioactive borate-based glass nano/micro-fibers. Mater Sci Engin C 55:105–107

    Article  CAS  Google Scholar 

  126. Laczka M, Cholewa-Kowalska K, Laczka-Osyczka A, Tworzydlo M, Turyna B (2000) Gel-derived materials of a CaO-P2O5-SiO2 system modified by boron, sodium, magnesium, aluminum, and fluorine compounds. J Biomed Mater Res 52:601–612

    Article  CAS  Google Scholar 

  127. Yu Y, Stevensson B, Edén M (2017) Medium-range structural organization of phosphorus-bearing borosilicate glasses revealed by advanced solid-state NMR experiments and MD simulations: Consequences of B/Si substitutions. J Phys Chem B 121:9737–9752

    Article  CAS  Google Scholar 

  128. Tsai TWT, Mou Y, Tseng YH, Zhang L, Chan JCC (2008) Solid-state NMR study of bioactive binary borosilicate glasses. J Phys Chem Solids 69:2628–2633

    Article  CAS  Google Scholar 

  129. Yu Y, Edén M (2016) Structure-composition relationships of bioactive borophosphosilicate glasses probed by multinuclear 11B, 29Si, and 31P solid state NMR. RSC Adv 6:101288–101303

    Article  CAS  Google Scholar 

  130. Eden M, Sundberg P, Stalhandske C (2011) The split network analysis for exploring composition-structure correlations in multicomponent glasses: II. Multinuclear NMR studies of alumino-borosilicates and glass wool fibers. J Non-Cryst Solids 357:1587–1594

    Article  CAS  Google Scholar 

  131. Edén M (2009) Homonuclear dipolar recoupling of half-integer quadrupolar nuclei. Techniques and applications. Solid State Nucl Magn Reson 36:1–10

    Article  CAS  Google Scholar 

  132. Sitarz M, Fojud Z, Olejniczak Z (2009) The aluminium effect on the structure of silico-phosphate glasses studied by NMR and FTIR. J Mol Struct 924-926:107–110

    Article  CAS  Google Scholar 

  133. Malavasi G, Pedone A, Menziani MC (2013) Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations. J Phys Chem B 117:4152–4150

    Article  CAS  Google Scholar 

  134. Melchers S, Uesbeck T, Winter O, Eckert H, Eder D (2016) Effect of aluminium ion incorporation on the bioactivity and structure in mesoporous bioactive glasses. Chem Mater 28:3254–3264

    Article  CAS  Google Scholar 

  135. Kilcup N, Gaynard S, Werner-Zwanziger U, Tonkopi E, Hayes J, Boyd D (2015) Stimulation of apoptotic pathways in liver cancer cells: An alternative perspective on the biocompatibility and the utility of biomedical glasses. J Biomater Appl 30:1445–1459

    Article  CAS  Google Scholar 

  136. Shruti S, Salinas AJ, Malavasi G, Lusvardi G, Menabue L, Ferrara C, Mustarelli P, Vallet-Regì M (2012) Structural and in vitro study of cerium, gallium and zinc containing sol-gel bioactive glasses. J Mater Chem 22:13698–13706

    Article  CAS  Google Scholar 

  137. Bachar A, Mercier C, Tricoteaux A, Leriche A, Follet C, Saadi M, Hampshire S (2012) Effects of addition of nitrogen on bioglass properties and structure. J Non-Cryst Solids 358:693–701

    Article  CAS  Google Scholar 

  138. Bachar A, Mercier C, Tricoteaux A, Leriche A, Follet-Houttemane C, Saadi M, Hampshire S (2013) Effects of nitrogen on properties of oxyfluoronitride bioglasses. Process Biochem 48:89–95

    Article  CAS  Google Scholar 

  139. Matsuya S, Stamboulis A, Hill RG, Law RV (2007) Structural characterization of ionomer glasses by multinuclear solid state MAS-NMR spectroscopy. J Non-Cryst Solids 353:237–243

    Article  CAS  Google Scholar 

  140. Pedone A, Charpentier T, Menziani MC (2012) The structure of fluoride-containing bioactive glasses: New insights from first-principles calculations and solid state NMR spectroscopy. J Mater Chem 22:12599–12608

    Article  CAS  Google Scholar 

  141. Chen X, Chen X, Brauer DS, Wilson RM, Hill RG, Karpukhina N (2014) Bioactivity of sodium free fluoride containing glasses and glass-ceramics. Mater (Basel) 7:5470–5487

    Article  CAS  Google Scholar 

  142. Chen X, Chen X, Brauer DS, Wilson RM, Hill RG, Karpukhina N (2014) Novel alkali free bioactive fluorapatite glass ceramics. J Non-Cryst Solids 402:172–177

    Article  CAS  Google Scholar 

  143. Hill R, Calver A, Skinner S, Stamboulis A, Law RV (2006) A MAS-NMR and combined Rietveldt study of mixed calcium/strontium fluorapatite glass-ceramics. Key Engin Mater 309-311:305–308

    Article  CAS  Google Scholar 

  144. Brauer DS, Karpukhina N, Seah D, Law RV, Hill RG (2008) Fluoride-containing bioactive glasses. Adv Mater Res 39–40:299–304 (Glass-The Challenge for the 21st Century-9th ESG Conference with the Annual Meeting of the ICG; Trencin; Slovakia; 22–26 June 2008)

    Article  CAS  Google Scholar 

  145. Brauer DS, Karpukhina N, Law RV, Hill RG (2009) Structure of fluoride-containing bioactive glasses. J Mater Chem 19:5629–5636

    Article  CAS  Google Scholar 

  146. Hill RG, Law RV, O’Donnell MD, Hawes J, Bubb NL, Wood DJ, Miller CA, Mirsaneh M, Reaney I (2009) Characterisation of fluorine containing glasses and glass-ceramics by 19F magic angle spinning nuclear magnetic resonance spectroscopy. J Eur Ceram Soc 29:2185–2191

    Article  CAS  Google Scholar 

  147. Hill RG, Stamboulis A, Law RV (2006) Characterisation of fluorine containing glasses by 19F, 27Al, 29Si and 31P MAS-NMR spectroscopy. J Dent 34:525–532

    Article  CAS  Google Scholar 

  148. Brauer DS, Karpukhina N, O’Donnell MD, Law RV, Hill RG (2010) Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater 6:3275–3282

    Article  CAS  Google Scholar 

  149. Chen X, Chen X, Brauer DS, Wilson RM, Law RV, Hill RG, Karpukhina N (2017) Sodium is not essential for high bioactivity of glasses. Int J Appl Glass Sci 8:428–437

    Article  CAS  Google Scholar 

  150. Kusumoto H, Abolghasemi S, Woodfine B, Hill RG, Law RV (2016) The effect of phosphate, fluorine, and soda content of the glass on the mechanical properties of the glass ionomer (polyalkenoate) cements. J Non-Cryst Solids 449:94–99

    Article  CAS  Google Scholar 

  151. Zhang L, de Araujo CC, Eckert H (2007) Structural role of fluoride in aluminophosphate sol-gel glasses: High-resolution double-resonance NMR studies. J Phys Chem B 111:10402–10412

    Article  CAS  Google Scholar 

  152. Chan JCC, Ohnsorge R, Meise-Gresch K, Eckert H, Höland W (2001) Apatite crystallization in an aluminosilicate glass matrix: Mechanistic studies by X-ray powder diffraction, thermal analysis and multinuclear solid state NMR spectroscopy. Chem Mater 13:4198–4206

    Article  CAS  Google Scholar 

  153. Eckert H (2018) Sol-gel synthesis of non-siliceous glasses and their structural characterization by solid state NMR. In: Lisa Klein (ed) Handbook of sol-gel science and technology, Springer, vol. III. pp. 1323–1373

  154. Carta D, Pickup DM, Newport RJ, Knowles JC, Smith ME, Drake KO (2005) Structural studies of bioactive sol-gel phosphate based glasses. Phys Chem Glass 46:365–371

    CAS  Google Scholar 

  155. Carta D, Knowles JC, Smith ME, Newport RJ (2007) Synthesis and structural characterization of P2O5-CaO-Na2O sol-gel materials. J Non-Cryst Solids 353:1141–1149

    Article  CAS  Google Scholar 

  156. Carta D, Pickup DM, Knowles JC, Ahmed I, Smith ME, Newport RJ (2007) A structural study of sol-gel and melt-quenched phosphate-based glasses. J Non-Cryst Solids 353:1759–1765

    Article  CAS  Google Scholar 

  157. Mandlule A, Döhler F, Van Wüllen L, Kasuga T, Brauer DS (2014) Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. J Non-Cryst Solids 392-393:31–38

    Article  CAS  Google Scholar 

  158. Pickup DM, Guerry P, Moss RM, Knowles JC, Smith ME, Newport RJ (2007) New sol-gel synthesis of a (CaO)0.3(Na2O)0.2(P2O5)0.5 bioresorbable glass and its structural characterization. J Mater Chem 17:4777–4784

    Article  CAS  Google Scholar 

  159. Brauer DS, Karpukhina N, Law RV, Hill RG (2010) Effect of TiO2 addition on structure, solubility and crystallization of phosphate invert glasses for biomedical applications. J Non-Cryst Solids 356:2626–2633

    Article  CAS  Google Scholar 

  160. Brauer DS, Rüssel C, Kraft J (2007) Solubility of glasses in the system P2O5-CaO-MgO-Na2O-TiO2: Experimental and modeling using artificial neural networks. J Non-Cryst Solids 353:263–270

    Article  CAS  Google Scholar 

  161. Foroutan F, Walters NJ, Owens GJ, Mordan NJ, Kim HW, de Leeuw NH, Knowles JC (2015) Sol-gel synthesis of quaternary (P2O5)55-(CaO)25-(Na2O)(20-x)-(TiO2)x bioresorbable glasses for bone tissue engineering applications (x = 0, 5, 10, or 15). Biomed Mater 10:045025

    Article  CAS  Google Scholar 

  162. Foroutan F, de Leeuw NH, Martin RA, Palmer G, Owens GJ, Kim HW, Knowles JC (2014) Novel sol–gel preparation of (P2O5)0.4–(CaO)0.25–(Na2O)x (TiO2)(0.35−x) bioresorbable glasses (x = 0.05, 0.1, and 0.15). J Sol-Gel Sci Technol 73:434–442

    Article  CAS  Google Scholar 

  163. Smith JM, King SP, Barney ER, Hanna JV, Newport RJ, Pickup DM (2013) Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content. J Chem Phys 138:034501

    Article  CAS  Google Scholar 

  164. Pickup DM, Valappil SP, Moss RM, Twyan HL, Guerry P, Smith ME, Wilson M, Knowles JC, Newport RJ (2009) Preparation, structural characterization and antibacterial properties of Ga-doped sol-gel phosphate-based glass. J Mater Sci 44:1858–1867

    Article  CAS  Google Scholar 

  165. Valappil SP, Ready D, Neel EAA, Pickup DM, O’Dell LA, Chrzanowski W, Pratten J, Newport RJ, Smith ME, Wilson M, Knowles JC (2009) Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomater 5:1198–1210

    Article  CAS  Google Scholar 

  166. Valappil SP, Ready D, Neel EAA, Pickup DM, Chrzanowski W, O’Dell LA, Newport RJ, Smith ME, Wilson M, Knowles JC (2008) Antimicrobial gallium-doped phosphate-based glasses. Adv Funct Mater 18:732–741

    Article  CAS  Google Scholar 

  167. Valappil SP, Pickup DM, Carroll DL, Hope CK, Pratten J, Newport RJ, Smith ME, Wilson M, Knowles JC (2007) Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrob Agents Chemother 51:4453–4461

    Article  CAS  Google Scholar 

  168. Shaharyar Y, Wein E, Kim JJ, Youngman RE, Muñoz F, Kim HW, Tilocca A, Goel A (2015) Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses. J Mater Chem B 3:9360–9373

    Article  CAS  Google Scholar 

  169. Zhang L, Eckert H (2006) Short- and medium-range order in sodium aluminophosphate glasses: New insights from high-resolution dipolar solid state NMR spectroscopy. J Phys Chem B 110:8946–8958

    Article  CAS  Google Scholar 

  170. Carta D, Knowles JC, Guerry P, Smith ME, Newport RJ (2009) Sol-gel synthesis and structural characterisation of P2O5-B2O3-Na2O glasses for biomedical applications. J Mater Chem 19:150–158

    Article  CAS  Google Scholar 

  171. Sharmin N, Hasan M, Rudd C, Boyd D, Werner-Zwanziger U, Ahmed I, Parsons AJ (2017) Effect of boron oxide addition on the viscosity-temperature behavior and structure of phosphate based glasses. J Biomed Mater Res B 105B:764–777

    Article  CAS  Google Scholar 

  172. Zielniok D, Cramer C, Eckert H (2007) Structure/property correlations in ion-conducting mixed network former glasses: Solid state NMR studies of the system Na2O-B2O3-P2O5. Chem Mater 19:3162–3170

    Article  CAS  Google Scholar 

  173. Yazdi AR, Towler M (2016) The effect of the addition of gallium on the structure of zinc borate glass with controlled gallium ion release. Mater Des 92:1018–1027

    Article  CAS  Google Scholar 

  174. Rodriguez O, Curran DJ, Papini M, Placek LM, Wren AW, Schemitsch EH, Zalzal P, Towler M (2016) Characterization of silica-based and borate based titanium containing bioactive glasses for coating metallic implants. J Non-Cryst Solids 433:95–102

    Article  CAS  Google Scholar 

  175. McDonald K, Hanson MA, Boyd D (2016) Modulation of strontium release from a tertiary borate glass through substitution of alkali for alkali earth oxide. J Non-Cryst Solids 443:184–191

    Article  CAS  Google Scholar 

  176. O’Connell K, Hanson M, O’Shea H, Boyd D (2015) Linear release of strontium ions from high borate glasses via lanthanide alkali substitutions. J Non-Cryst Solids 430:1–8

    Article  CAS  Google Scholar 

  177. Turcu FRV, Samoson A, Maier M, Trandafir DL, Simon S (2016) High fraction of penta-coordinated aluminum and gallium in lanthanum-aluminum-gallium borate. J Am Ceram Soc 99:2795–2800

    Article  CAS  Google Scholar 

  178. Mathew R, Turdean-Ionescu C, Yu Y, Stevensson B, Izquierdo-Barba I, García A, Arcos D, Vallet-Regí M, Edén M (2017) Proton environments in biomimetic calcium phosphates formed from mesoporous bioactive CaO-SiO2-P2O5 glasses in vitro: Insights from solid-state NMR. J Phys Chem C 121:13223–13238

    Article  CAS  Google Scholar 

  179. Christie JK, Cormack AN, Hanna JV, Martin RA, Newport RJ, Pickup DM, Smith ME (2016) Bioactive sol–gel glasses at the atomic scale: The complementary use of advanced probe and computer modeling methods. Int J Appl Glass Sci 7:147–153

    Article  CAS  Google Scholar 

  180. Dietrich E, Oudadesse H, Floch ML, Bureau B, Gloriant T (2009) In vitro chemical reactivity of doped bioactive glasses: An original approach by solid-state NMR spectroscopy. Adv Engin Mater 11:B98–B105

    Article  CAS  Google Scholar 

  181. Lin KSK, Tseng YH, Mou Y, Hsu, Yang YC (2005) Mechanistic study of apatite formation on bioactive glass surface using 31P solid-state NMR spectroscopy. Chem Mater 17:4493–4501

    Article  CAS  Google Scholar 

  182. Skipper LJ, Sowrey FE, Pickup DM, Newport RJ, Drake KO, Lin ZH, Smith ME, Saravanapavan P, Hench LL (2005) The atomic-scale interaction of bioactive glasses with simulated body fluid. Mater Sci Forum 480–481:21–26 (1st International Meeting on Applied Physics, APHYS-2003; Badajoz; Spain; 13 October 2003 through 18 October 2003)

    Article  CAS  Google Scholar 

  183. Jones JR, Kemp TF, Smith ME (2006) Effect of OH content on the bioactivity of sol-gel derived glass foam scaffolds. Key Engin Mater 309-311:1031–1034

    Article  CAS  Google Scholar 

  184. Skipper LJ, Sowrey FE, Rashid R, Newport RJ, Lin Z, Smith ME (2005) X-ray diffraction and solid state NMR studies of the growth of hydroxyapatite on bioactive calcia:silica sol-gel glasses. Phys Chem Glass 46:372–376

    CAS  Google Scholar 

  185. Vương BX, Hiệp ĐT (2016) In vitro studies of bioglass material by X-ray diffraction and solid-state MAS-NMR. Glass Phys Chem 42:188–193

    Article  CAS  Google Scholar 

  186. Gunawidjaja PN, Lo AYH, Izquierdo-Barba I, García A, Arcos D, Stevensson B, Grins J, Vallet-Regí M, Edén M (2010) Biomimetic apatite mineralization mechanisms of mesoporous bioactive glasses as probed by multinuclear 31P, 29Si, 23Na and 13C solid-state NMR. J Phys Chem C 114:19345–19356

    Article  CAS  Google Scholar 

  187. Mathew R, Gunawidjaja PN, Izquierdo-Barba I, Jansson K, García A, Arcos D, Vallet-Regí M, Edén M (2011) Solid-state 31P and 1H NMR investigations of amorphous and crystalline calcium phosphates grown biomimetically from a mesoporous bioactive glass. J Phys Chem C 115:20572–20582

    Article  CAS  Google Scholar 

  188. Gunawidjaja PN, Izquierdo-Barba I, Mathew R, Jansson K, García A, Grins J, Arcos D, Vallet-Regí M, Edén M (2012) Quantifying apatite formation and cation leaching from mesoporous bioactive glasses in vitro: A SEM, solid-state NMR and powder XRD study. J Mater Chem 22:7214–7223

    Article  CAS  Google Scholar 

  189. Turdean-Ionescu C, Stevensson B, Grins J, Izquierdo-Barba I, García A, Arcos D, Vallet-Regí M, Edén M (2015) Composition-dependent in vitro apatite formation at mesoporous bioactive glass-surfaces quantified by solid-state NMR and powder XRD. RSC Adv 5:86061–86071

    Article  CAS  Google Scholar 

  190. Turdean-Ionescu C, Stevensson B, Izquierdo-Barba I, García A, Arcos D, Vallet-Regí M, Edén M (2016) Surface reactions of mesoporous bioactive glasses monitored by solid-state NMR: Concentration effects in simulated body fluid. J Phys Chem C 120:4961–4974

    Article  CAS  Google Scholar 

  191. Sriangangathan D, Chen X, Hing KA, Kanwal N, Hill RG (2017) The effect of the incorporation of fluoride into strontium-containing bioactive glasses. J Non-Cryst Solids 457:25–30

    Article  CAS  Google Scholar 

  192. Mosbahi S, Oudadesse H, Wers E, Trigui M, Lefeuvre B, Roiland C, Elfeki H, Elfeki A, Rebai T, Keskes H (2016) Study of bioactive glass ceramic for use as bone biomaterial in vivo: Investigation by nuclear magnetic resonance and histology. Ceram Int 42:4827–4836

    Article  CAS  Google Scholar 

  193. Fujiu T, Ogino M (1984) Difference of bond bonding behavior among surface active glasses and sintered apatite. J Biomed Mater Res 18:845–859

    Article  CAS  Google Scholar 

  194. Ni QZ, Daviso E, Can TV, Markhasin E, Jawla SK, Swager TM, Temkin RJ, Herzfeld J, Griffin RG (2013) High-frequency dynamic polarization. Acc Chem Res 46:1933–1941

    Article  CAS  Google Scholar 

  195. Wittmann JJ, Eckhardt M, Harneit W, Corzilius B (2017) Dynamic nuclear polarization for sensitivity enhancement in solid state NMR. Prog NMR Spectrosc 102-103:120–195

    Article  CAS  Google Scholar 

  196. Rossini AJ, Zagdoun A, Lelli M, Lesage A, Coperet C, Emsley L (2013) Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc Chem Res 46:1942–1951

    Article  CAS  Google Scholar 

  197. Lee D, Crevant C, Bonhomme-Coury L, Babonneau F, Laurencin D, Bonhomme C, De Paëpe G (2017) Interfacial Ca2+ environments in nanocrystalline apatites revealed by dynamic nuclear polarization enhanced 43Ca NMR spectroscopy. Nat Commun 8:14104

    Article  CAS  Google Scholar 

  198. Leroy C, Aussenac F, Bonhomme-Coury L, Osaka A, Hayakaya S, Babonneau F, Coelho-Diogo C, Bonhomme C (2017) Hydroxyapatites. Key structural questions and answers from dynamic nuclear polarization. Anal, Chem 89:10201–10207

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I wish to thank the past and present members of my research group at the WWU Münster and at IFSC, University of São Paulo for their contributions to work reviewed in this article. Special thanks go to Professor Dr. Jinjun Ren (now at the Shanghai Institute of Optics and Fine Mechanics), Mr. Henrik Bradtmüller, Dr. Bianca Cerrutti, Dr. Carsten Doerenkamp, Dr. Cornelia Schröder, Dr. Tobias Uesbeck, for their experimental work being reviewed here, made during the course of PhD and postdoctoral work during the time period 2010–2016. I further wish to thank Professors Dr. Dominik Eder (formerly WWU Münster, now TU Wien) and Dr. Edgar Zanotto (Federal University of Brasil in Sao Carlos) and their coworkers for fruitful collaborations. Further support by the Brazilian funding agencies São Paulo Research Foundation FAPESP (CEPID Project 2013/07793-6, grant 2013/23490-3) and CNPq (Universal Project 477053/2012-2) is most gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hellmut Eckert.

Ethics declarations

Conflict of interest

The author declares that he had no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckert, H. Structural characterization of bioactive glasses by solid state NMR. J Sol-Gel Sci Technol 88, 263–295 (2018). https://doi.org/10.1007/s10971-018-4795-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4795-7

Keywords

Navigation