Skip to main content
Log in

Chitosan-stabilized gold nanoparticles supported on silica/titania magnetic xerogel applied as antibacterial system

  • Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The sol-gel method is an excellent choice to produce composite materials with enhanced performance by efficiently combining the individual features of their components. In this work, chitosan-stabilized gold nanoparticles (ChAuNPs) were immobilized onto a SiO2/TiO2 magnetic xerogel, which was synthesized through hetero-condensation of silica and titania precursors in the presence of magnetite particles covered with a silica shell. This system allies the antimicrobial capacity of ChAuNP, the surface reactivity of titania, porous structure of silica, and magnetic response of the magnetite particles. The magnetite phase was characterized by X-ray diffraction and the shape and size of the particles were observed by scanning and transmission electron microscopy. ChAuNPs were obtained in spherical shape with size below 10 nm, as characterized by UV–Vis spectroscopy and transmission electron microscopy. SiO2/TiO2 magnetic xerogel containing the ChAuNP was also characterized by thermogravimetric and textural analysis, transmission electron microscopy, and magnetism. The ChAuNP-SiO2/TiO2 magnetic xerogel is mesoporous with facile magnetic recovering and its performance as antimicrobial agent was assessed against the pathogen E. coli. The ChAuNP-SiO2/TiO2 magnetic xerogel presented inhibitory effect against the tested bacteria, even with such low gold content. After the magnetic recovering, the material was reused and maintained its antibacterial activity.

Highlights

  • Magnetic composite embedding magnetite particles in silica/titania network.

  • Adhesion of chitosan-stabilized gold nanoparticles to silica/titania surface.

  • Porous and high surface area material containing gold nanoparticles as antimicrobial agent.

  • Efficient and reusable antimicrobial system against E. coli bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khan ST, Mussarat J, Al-Khedhairy AA (2016) Colloid Surf B 146:70–83

    Article  Google Scholar 

  2. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB (2013) Clin Microbiol Rev 26:822–880

    Article  Google Scholar 

  3. Lambrechts AA, Human IS, Doughari JH, Lues JFR (2014) Pak J Med Sci 30:755–758

    Google Scholar 

  4. Park J, Kim JS, Kim S, Shin E, Oh K-H, Kim Y, Kim CH, Hwang MA, Jin CM, Na K, Lee J, Cho E, Kang B-H, Kwak H-S, Seong WK, Kim J (2018) Int J Infect Dis 66:45–50.

    Article  Google Scholar 

  5. Vuthy Y, Lay KS, Seiha H, Kerleguer A, Aidara-Kane A (2017) Asian Pac J Trop Biomed 7:670–674

    Article  Google Scholar 

  6. Wang L, Nakamura H, Kage-Nakadai E, Hara-Kudo Y, Nishikawa Y (2017) Int J Food Microbiol 249:44–52

    Article  Google Scholar 

  7. Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Molecules 21:836–866

    Article  Google Scholar 

  8. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Mater Sci Eng 44:278–284

    Article  Google Scholar 

  9. Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Kamal MA, Ashraf GM (2017) Curr Drug Metab 18:120–128

    Article  Google Scholar 

  10. Raghunath A, Perumal E (2017) Int J Antimicrob Agent 49:137–152

    Article  Google Scholar 

  11. Pagno CH, Costa TMH, de Menezes EW, Benvenutti EV, Hertz PF, Matte CR, Tosati JV, Monteiro AR, Rios AO, Flôres SH (2015) Food Chem 173:755–762

    Article  Google Scholar 

  12. Venkatesan R, Rajeswari N (2017) Polym Adv Technol 28:1699–1706

    Article  Google Scholar 

  13. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez (2008) Water Res 42:4591–4602

    Article  Google Scholar 

  14. Das SK, Das AR, Guha AK (2009) Langmuir 25:8192–8199

    Article  Google Scholar 

  15. Schneid AC, Roesch EW, Sperb F, Matte U, da Silveira NP, Costa TMH, Benvenutti EV, de Menezes EW (2014) J Mater Chem B 2:1079–1086

    Article  Google Scholar 

  16. Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, Kadirvelu K, Balagurunathan R (2017) RSC Adv 7:51729–51743

    Article  Google Scholar 

  17. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2009) J Biomater Sci 20:2129–2144

    Article  Google Scholar 

  18. Zheng K, Setyawati MI, Leong DT, Xie J (2017) ACS Nano 11:6904–6910

    Article  Google Scholar 

  19. Singh A, Singh NB, Afzal S, Singh T, Hussain I (2018) J Mater Sci 53:185–201

    Article  Google Scholar 

  20. Sanmugam A, Vikraman D, Park HJ, Kim H-S (2017) Nanomaterials 7:363–377

    Article  Google Scholar 

  21. Kumar R, Umar A, Kumar G, Nalwa HS (2017) Ceram Int 43:3940–3961

    Article  Google Scholar 

  22. Zhao Y, Xing Q, Janjanam J, He K, Long F, Low K-B, Tiwari A, Zhao F, Shahbazian-Yassar R, Friedrich C, Shokuhfar T (2014) Int J Nanomed 9:5177–5187

    Google Scholar 

  23. Wanag A, Rokicka P, Kusiak-Nejman E, Kapica-Kozar J, Wrobel RJ, Markowska-Szczupak A, Morawski AW (2018) Ecotox Environ Safe 147:788–793

    Article  Google Scholar 

  24. Fernandez-Moure JS, Evangelopoulos M, Colvill K, Van Eps JL, Tasciotti E (2017) Nanomedicine 12:1319–1334

    Article  Google Scholar 

  25. Cui Y, Zhao Y, Tian Y, Zhang W, Lu X, Jiang X (2012) Biomaterials 33:2327–2333

    Article  Google Scholar 

  26. Niemirowicz K, Swiecicka I, Wilczewska AZ, Misztalewska I, Kalska-Szostko B, Bienias K, Bucki R, Car H (2014) Int J Nanomed 9:2217–2224

    Article  Google Scholar 

  27. Osonga FJ, Yazgan I, Kariuki V, Luther D, Jimenez A, Le P, Sadik OA (2016) RSC Adv 6:2302–2313

    Article  Google Scholar 

  28. Khan FU, Chen Y, Khan NU, Ahmad A, Tahir K, Khan ZU, Khan AU, Khan SU, Raza M, Wan P (2017) Microb Pathog 107:419–424

    Article  Google Scholar 

  29. Bui VKH, Park D, Lee Y-C (2017) Polymers 9:21–45

    Article  Google Scholar 

  30. Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Prog Polym Sci 39:1644–1667

    Article  Google Scholar 

  31. Leiva A, Bonardd S, Pino M, Saldías C, Kortaberria G, Radic D (2015) Eur Polym J 68:419–431

    Article  Google Scholar 

  32. Ryan C, Alcock E, Buttimer F, Schmidt M, Clarke D, Pemble M, Bardosova M (2017) Sci Technol Adv Mat 18:528–540

    Article  Google Scholar 

  33. Chung Y-C, Wang H-L, Chen Y-M, Li S-L (2003) Bioresour Technol 88:179–184

    Article  Google Scholar 

  34. Cheung RCF, Ng TB, Wong JH, Chan WY (2015) Mar Drugs 13:5156–5186

    Article  Google Scholar 

  35. Wang L, Hu C, Shao L (2017) Int J Nanomed 12:1227–1249

    Article  Google Scholar 

  36. Caldas EM, Novatzky D, Deon M, de Menezes EW, Hertz PF, Costa TMH, Arenas LT, Benvenutti EV (2017) Micro Mesopor Mater 247:95–102

    Article  Google Scholar 

  37. El Kadib A, Bousmina M (2012) Chem Eur J 18:8264–8277

    Article  Google Scholar 

  38. El Kadib A, Molvinger K, Cacciaguerra T, Bousmina M, Brunel D (2011) Micro Mesopor Mater 142:301–307

    Article  Google Scholar 

  39. Karthikeyan KT, Nithya A, Jothivenkatachalam K (2017) Int J Biol Macromol 104:1762–1773

    Article  Google Scholar 

  40. Li A, Jin Y, Muggli D, Pierce DT, Aranwela H, Marasinghe GK, Knutson T, Brockman G, Zhao JX (2013) Nanoscale 5:5854–5862

    Article  Google Scholar 

  41. Laranjo MT, Ricardi NC, Arenas LT, Benvenutti EV, Oliveira MC, Santos MJL, Costa TMH (2014) J Sol-Gel Sci Technol 72:273–281

    Article  Google Scholar 

  42. Park S, Park HH, Ko Y-S, Lee SJ, Le TS, Woo K, Ko G (2017) Sci Total Environ 609:289–296

    Article  Google Scholar 

  43. Teja AS, Koh P-Y (2009) Prog Cryst Growth Charact 55:22–45

    Article  Google Scholar 

  44. Stöber W, Fink A, Bohn E (1968) J Colloid Interf Sci 26:62–69

    Article  Google Scholar 

  45. Webb PA, Orr C, Camp RW, Olivier JP, Yunes YS (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corporation, Norcross

    Google Scholar 

  46. Miles AAL, Misra SS (1938) J Hyg 38:732–749

    Article  Google Scholar 

  47. Silva N, Junqueira VCA, Silveira NFA, Taniwaki MH, Gomes RAR, Okazaki MM (2017) Manual de métodos de análise microbiológica de alimentos e água. Editora Blucher, São Paulo

    Google Scholar 

  48. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley Publishing Company, Massachusetts

    Google Scholar 

  49. Laptash NM, Maslennikova IG, Kaidalova TA (1999) J Fluor Chem 99:133–137

    Article  Google Scholar 

  50. Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis. Springer, New York

  51. Eustis S, El-Sayed MA (2006) Chem Soc Rev 35:209–217

    Article  Google Scholar 

  52. Csáki A, Thiele M, Jatschka J, Dathe A, Zopf D, Stranik O, Fritzsche W (2015) Eng Life Sci 15:266–275

    Article  Google Scholar 

  53. Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) J Phys Chem C 111:4596–4605

    Article  Google Scholar 

  54. Ramos JVH, Morawski FM, Costa TMH, Dias SLP, Benvenutti EV, de Menezes EW, Arenas LT (2015) Micro Mesopor Mater 217:109–118

    Article  Google Scholar 

  55. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  56. Harres A, Mikhov M, Skumryev V, de Andrade AMH, Schmidt JE, Geshev J (2016) J Magn Magn Mater 402:76–82

    Article  Google Scholar 

Download references

Acknowledgements

We thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul), and CAPES (Coordenação de Aperfeiçoamento Pessoal de Nível Superior) for financial support and grants. We also thank CNANO (Centro de Nanociência e Nanotecnologia) and CMM (Centro de Microscopia e Microanálise) of UFRGS (Universidade Federal do Rio Grande do Sul).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Benvenutti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deon, M., Morawski, F.M., Passaia, C. et al. Chitosan-stabilized gold nanoparticles supported on silica/titania magnetic xerogel applied as antibacterial system. J Sol-Gel Sci Technol 89, 333–342 (2019). https://doi.org/10.1007/s10971-018-4699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4699-6

Keywords

Navigation