Skip to main content
Log in

Preparation of silicon-doped TiO2 fiber and supported TiO2 and comparison study of their photocatalytic activity

  • Brief Communication: Industrial and technological applications of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The Si-doped TiO2 fiber and supported TiO2 were prepared by sol–gel method and steam heat treatment, by using titanic chloride (TiCl4) as titanium source, tetraethoxysilane as silicon source and alumina foam ceramic as carrier. The samples were characterized by X-ray diffraction, scanning electron microscope, and ultraviolet–visible spectrophotometer. Methyl orange solution (with a concentration of 20 mg/l) was chosen for photodegradation. The influences of calcination temperature, dopant concentration and solution pH value on the decolorization efficiency of methyl orange were studied systematically. The photoactivity of TiO2 fiber and supported TiO2 were also compared. The results showed that the optimal conditions for preparing the anatase TiO2 with good photocatalytic activity was: calcination temperature 700 °C, calcination time 2 h, Si doping amount 20 mol%. Si-doped TiO2 fiber and supported TiO2 exhibited high photocatalytic efficiency on the degradation of methyl orange solutions in condition of strong acid (pH = 2) and strong alkaline (pH = 13.5). TiO2 fiber and supported TiO2 are easy to be separated and reused in water treatment, so they have high practical value.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Suzuki H, Araki S, Yamamoto H (2015) Evaluation of advanced oxidation processes (AOP) using O3, UV, and TiO2, for the degradation of phenol in water. J Water Proc Eng 7(1):54–60

    Article  Google Scholar 

  2. William HG, Joon-Wun K, Douglas HC (1987) The chemistry of water treatment processes involving Ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng 9(4):335–352

    Article  Google Scholar 

  3. Minella M, Marchetti G, Laurentiis ED, Malandrino M, Maurino V (2014) Photo-fenton oxidation of phenol with magnetite as iron source. Appl Catal B 154-155(5):102–109

    Article  Google Scholar 

  4. Mohamed OS, Gaber EAM, Abdel-Wahab AA (2002) Photocatalytic oxidation of selected aryl alcohols in acetonitrile. J Photochem Photobiol A 148(1-3):205–210

    Article  Google Scholar 

  5. Rodríguez A, Rosal R, Perdigón-Melón JA, Mezcua M, Agüera A, Hernando MD (2008) Ozone-based technologies in water and wastewater treatment. Handb Environ Chem 5:127–175

    Article  Google Scholar 

  6. Nasseri S, Vaezi F, Mahvi AH (2006) Determination of the ultrasonic effectiveness in advanced wastewater treatment. Iran J Environ Health Sci Eng 3(2):109–116

    Google Scholar 

  7. Domínguez CM, Quintanilla A, Casas JA (2014) Treatment of real winery wastewater by wet oxidation at mild temperature. Sep Purif Technol 129(4):121–128

    Article  Google Scholar 

  8. Erkonak H, Söğüt OÖ, Akgün M (2008) Treatment of olive mill wastewater by supercritical water oxidation. J Supercrit Fluids 46(2):142–148

    Article  Google Scholar 

  9. Borges ME (2016) Photocatalysis with solar energy: sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Solar Energy 135:527–535

    Article  Google Scholar 

  10. Ryu J, Choi W (2008) Substrate-specific photocatalytic activities of TiO2 and multiactivity test for water treatment application. Environ Sci Technol 42(1):294

    Article  Google Scholar 

  11. Lee SY, Park SJ (2013) TiO2 photocatalyst for water treatment applications. J Ind Eng Chem 19(6):1761–1769

    Article  Google Scholar 

  12. Ze-Da M, Lei Z, Jong-Geun C (2011) Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light. Nanoscale Res Lett 6(1):459

    Article  Google Scholar 

  13. Pham TD, Lee BK (2014) Cu-doped TiO2/GF for photocatalytic disinfection of Escherichia coli in bioaerosols under visible light irradiation: application and mechanism. Appl Surf Sci 296(4):15–23

    Article  Google Scholar 

  14. Klaysri R (2015) Impact of calcination atmospheres on the physiochemical and photocatalytic properties of nanocrystalline TiO2 and Si-doped TiO2. Ceram Int 41(9):11409–11417

    Article  Google Scholar 

  15. Zhuang Y, Yu F, Ma J (2015) Enhanced adsorption and removal of ciprofloxacin on regenerable long TiO2 nanotube/graphene oxide hydrogel adsorbents. J Nanomater 2015(3):1–8

    Article  Google Scholar 

  16. Shen YW, Wang W, Xiao K (2016) Synthesis of three-dimensional carbon felt supported TiO2 monoliths for photocatalytic degradation of methyl orange. J Environ Chem Eng 4(1):1259–1266

    Article  Google Scholar 

  17. Bao N (2010) Si-doped mesoporous TiO2 continuous fibers: preparation by centrifugal spinning and photocatalytic properties. J Hazard Mater 174(1-3):129–136

    Article  Google Scholar 

  18. Du J, Li X, Li K (2016) High hydrophilic Si-doped TiO2 nanowires by chemical vapor deposition. J Alloys Compd 687:893–897

    Article  Google Scholar 

  19. Chen S, Lv B, Xu Y (2012) Fe-quinoline complexes sensitized Si-doped TiO2, with enhanced visible light photocatalytic activity. Mater Lett 77:32–34

    Article  Google Scholar 

  20. You Y (2012) Preparation of continuous TiO2 fibers by sol–gel method and its photocatalytic degradation on formaldehyde. Appl Surf Sci 258(8):3469–3474

    Article  Google Scholar 

  21. Liu H, Chen Y, Pei S (2013) Preparation of nanocrystalline titanium dioxide fibers using sol–gel method and centrifugal spinning. J Sol–Gel Sci Technol 65(3):443–451

    Article  Google Scholar 

  22. Ramasundaram S, Seid MG, Choe JW (2016) Highly reusable TiO2, nanoparticle photocatalyst by direct immobilization on steel mesh via PVDF coating, electrospraying, and thermal fixation. Chem Eng J 306:344–351

    Article  Google Scholar 

  23. He XL, Guo YK, Wang CY (2015) Photocatalytic degradation of methylorange solution by TiO2 loaded porous ceramics. J Synth Cryst 44(2):503–508

    Google Scholar 

  24. Teekateerawej S, Nishino J, Nosaka Y (2005) Photocatalytic microreactor study using TiO2 -coated porous ceramics. J Appl Electrochem 35(7):693–697

    Article  Google Scholar 

  25. Bao N, Zhang A (2007) Preparation of Si-doped TiO2 fibers by sol–gel method and its photocatalytic activity. Acta Chim Sin 65(23):2786–2792

    Google Scholar 

  26. Yang J (2002) Rapid synthesis of nanocrystalline TiO2/SnO2 binary oxides and their photoinduced decomposition of methyl orange. J Solid State Chem 165(1):193–198

    Article  Google Scholar 

  27. Cheng P, Zheng M, Jin Y (2003) Preparation and characterization of silica-doped titania photocatalyst through sol–gel method. Mater Lett 57(20):2989–2994

    Article  Google Scholar 

  28. Yi Y, Wang QW, Wang LJ (2009) Catalysis of nanometer TiO2/SiO2 composite. Environ Sci Technol 32(4):9–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heyi Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Liu, H., Dai, D. et al. Preparation of silicon-doped TiO2 fiber and supported TiO2 and comparison study of their photocatalytic activity. J Sol-Gel Sci Technol 83, 243–251 (2017). https://doi.org/10.1007/s10971-017-4439-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4439-3

Keywords

Navigation