Skip to main content

Advertisement

Log in

Validation of the COMPASS force field for complex inorganic–organic hybrid polymers

  • Original Paper: Modelling, computational tools and theoretical studies of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Inorganic–organic hybrid polymers are promising alternatives to simple organic polymers. They combine the advantages of organic and inorganic components in one homogeneous material, which can be adjusted to match sophisticated demands for various possible applications ranging from soft silicones to hard hybrid ceramics. Typically, the inorganic network is formed by a sol-gel reaction whereas the organic network is built by a polymerization reaction. Due to their complex architecture on a molecular level, it is often impossible to experimentally obtain information on the atomistic structures of such hybrid materials. In this work, we validate the all-atom COMPASS force field for the simulation of such materials on the basis of a simplified test system with (methacryloyloxymethyl)dimethylethoxysilane as a precursor; which has only one functionality for inorganic condensation, building only one defined condensation product in the sol-gel reaction. The force field was validated based on the experimentally determined single crystal structure of this condensation product and the calculation of its glass transition and melting temperatures by molecular dynamics. The prediction of fluid densities was validated on liquids of the precursor and the condensation product. The validated force field is applied to demonstrate the influence of inorganic cross-linking in the resulting polymer on a simplified network model.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Ormocer® is a registered trademark of Fraunhofer Gesellschaft zur Förderung der Angewandten Forschung e.V., Germany.

References

  1. Kickelbick G (2007) Hybrid materials. Synthesis, characterization, and applications, 1st ed. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  2. Sanchez C, Belleville P, Popall M, Nicole L (2011) Chem Soc Rev 40:696–753

  3. Haas K-H (2000) Adv Eng Mater 2:571–582

  4. Schmidt HK (1988) DVS-Berichte 110:54–56

  5. Schmidt HK, Popall M (1990) Proc SPIE 1328:249–257

  6. Schmidt H, Wolter H (1990) J Non Cryst Solids 121:428–435

  7. Haas K-H, Wolter H (1999) Curr Opin Solid State Mater Sci 4:571–580

  8. Haas K-H, Rose K (2003) Rev Adv Mater Sci 5:47–52

  9. Maruo S, Nakamura O, Kawata S (1997) Opt Lett 22:132–134

  10. Burmeister F, Steenhusen S, Houbertz R, Zeitner UD, Nolte S, Tünnermann A (2012) J Laser Appl 24:042014

  11. Burmeister F, Steenhusen S, Houbertz R, Asche TS, Nickel J, Nolte S, Tucher N, Josten P, Obel K, Wolter H, Fessel S, Schneider AM, Gärtner K-H, Beck C, Behrens P, Tünnermann A, Walles H (2015) In: A Ostendorf, K König (eds) Optically induced nanostructures. Walter de Gruyter Inc., Berlin

  12. Reinhardt C, Ferreras Paz V, Zheng L, Kurselis K, Birr T, Zywietz U, Chichkov B, Frenner K, Osten W (2015) In: A Ostendorf, K König (eds) Optically induced nanostructures. Walter de Gruyter Inc., Berlin

  13. Houbertz R, Fröhlich L, Popall M, Streppel U, Dannberg P, Bräuer A, Serbin J, Chichkov BN (2003) Adv Eng Mater 5:551–555

  14. Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Fröhlich L, Popall M (2003) Opt Lett 28:301–303

  15. Houbertz R, Domann G, Cronauer C, Schmitt A, Martin H, Park J-U, Fröhlich L, Buestrich R, Popall M, Streppel U, Dannberg P, Wächter C, Bräuer A (2003) Thin Solid Films 442:194–200

  16. Stichel T, Hecht B, Houbertz R, Sextl G (2010) J Laser Micro Nanoeng 5:209–212

  17. Levine IN (2013) Quantum Chemistry, 7th ed. Pearson Education International, Upper Saddle River

    Google Scholar 

  18. van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) J Phys Chem A 105:9396–9409

  19. Stuart SJ, Tutein AB, Harrison JA (2000) J Chem Phys 112:6472–6486

  20. Li C, Strachan A (2015) J Polym Sci Part B Polym Phys 53:103–122

  21. Lu X, Wang X, Li Q, Huang X, Han S, Wang G (2015) Polym Degrad Stab 114:72–80

  22. Chenoweth K, van Duin ACT, Goddard WA (2008) J Phys Chem A 112:1040–1053

  23. Chenoweth K, Cheung S, van Duin ACT, Goddard WA, Kober EM (2005) J Am Chem Soc 127:7192–7202

  24. Liu X, Li X, Liu J, Wang Z, Kong B, Gong X, Yang X, Lin W, Guo L (2014) Polym Degrad Stab 104:62–70

  25. Deetz JD, Faller R (2014) J Phys Chem B 118:10966–10978

  26. Deetz JD, Faller R (2015) Soft Matter 11:6780–6789

  27. Deetz JD, Faller R (2015) J Non Cryst Solids 429:183–189

  28. Fessel S, Schneider AM, Steenhusen S, Houbertz R, Behrens P (2012) J Sol-Gel Sci Technol 63:356–365

  29. Schottner G (2001) Chem Mater 13:3422–3435

  30. Buestrich R, Kahlenberg F, Popall M, Dannberg P, Müller-Fiedler R, Rösch O (2001) J Sol-Gel Sci Technol 20:181–186

  31. Merker RL, Scott MJ (1961) J Org Chem 26:5180–5182

  32. Sheldrick GM (2008) Acta Crystallogr Sect A Found Crystallogr 64:112–122

  33. Accelrys Software Inc. (2014) Dassault Systèmes. Materials Studio 7.0. California, USA.

  34. Sun H (1998) J Phys Chem B 102:7338–7364

  35. Sun H, Rigby D (1997) Spectrochim Acta Part A Mol Biomol Spectrosc 53:1301–1323

  36. Rigby D (2004) Fluid Phase Equilib 217:77–87

  37. Song X, Sun Y, Wu X, Zeng F (2011) Comput Mater Sci 50:3282–3289

  38. Bizet S, Galy J, Gérard J-F (2006) Polymer 47:8219–8227

  39. Bharadwaj RK (2000) Polymer 41:7209–7221

  40. Maple JR, Hwang M-J, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) J Comput Chem 15:162–182

  41. Hwang MJ, Stockfisch TP, Hagler AT (1994) J Am Chem Soc 116:2515–2525

  42. Ewald PP (1921) Ann Phys 369:253–287

  43. Shiu S-C, Tsai J-L (2014) Compos Part B Eng 56:691–697

  44. Wang Z, Lv Q, Chen S, Li C, Sun S, Hu S (2015) Mol Simul 41:1515–1527

  45. Sul J-H, Gangadhara Prusty B, Kelly DW (2015) Adv Manuf Polym Compos Sci 1:94–104

  46. Watt SW, Chisholm JA, Jones W, Motherwell S (2004) J Chem Phys 121:9565–9573

  47. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

  48. Nicholas JB, Winans RE, Harrison RJ, Iton LE, Curtiss LA, Hopfinger AJ (1992) J Phys Chem 96:7958–7965

  49. Luke BT (1993) J Phys Chem 97:7505–7510

  50. Bär MR, Sauer J (1994) Chem Phys Lett 226:405–412

  51. Sun H, Ren P, Fried JR (1998) Comput Theor Polym Sci 8:229–246

  52. Merker RL, Noll JE (1956) J Org Chem 21:1537–1539

  53. Andrianov KA, Dabagova AK, Syrtsova ZS (1962) Bull Acad Sci USSR Div Chem Sci 11:1487–1491

  54. Larsen GS, Lin P, Hart KE, Colina CM (2011) Macromolecules 44:6944–6951

  55. Lavigueur C, Zhu XX (2012) RSC Adv 2:59–63

Download references

Acknowledgments

The authors would like to thank Robert Zahn at “Deutsches Institut für Kautschuktechnologie e.V.” for the DSC measurements and Dr. Michael Wiebcke and Fabian L. Kempf for assistance in the X-ray single crystal structure determination. The financial support of the Deutsche Forschungsgemeinschaft (DFG) within the priority program 1327 “sub-100 nm structures” is gratefully acknowledged. Individual financial support is granted to Thomas S. Asche by the graduate program MARIO, sponsored by the State of Lower Saxony. S. Steenhusen and R. Houbertz at Fraunhofer Institut für Silicatforschung, Würzburg kindly provided information on the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas M. Schneider.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asche, T.S., Behrens, P. & Schneider, A.M. Validation of the COMPASS force field for complex inorganic–organic hybrid polymers. J Sol-Gel Sci Technol 81, 195–204 (2017). https://doi.org/10.1007/s10971-016-4185-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4185-y

Keywords

Navigation