Skip to main content
Log in

Growth of ZnO nanorod arrays by one-step sol–gel process

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

ZnO nanorods are usually formed by two-step method. In the first step, a seed layer is coated on substrate and then the second treatment by hydrothermal method is employed for formation of nanorods. Here, we report that ZnO nanorods can be directly coated on glass substrates by sol–gel dip coating technique without the second treatment. The effect of coating layers on morphological, structural, electrical, and optical properties was studied. According to the cross-sectional SEM images of the produced ZnO nanorods, a seed layer was spontaneously observed. The diameter of the ZnO nanorods was varied between 200 nm and 1 µm with coating thickness. The effect of the zinc nitrate tetrahydrate and zinc chloride precursors on the preparation of the ZnO nanorods was also investigated. And, it was found that the zinc chloride precursor exhibited formation of nanorods on the glass substrates. According to the Hall effect measurements, the ZnO nanorods exhibited mobility as high as 95 cm2 (Vs)−1. The X-ray diffraction and electrical studies indicated that highly pure crystalline ZnO nanorods could be obtained by the one-step solution method.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Janotti A, Van de Walle CG (2009) Rep Prog Phys 72:1–29

    Article  Google Scholar 

  2. Yi G-C, Wang C, Park WIL (2005) Semicond Sci Technol 20:S22–S34

    Article  Google Scholar 

  3. Ahmed F, Arshi N, Anwar MS, Danish R, Koo BH (2013) Thin Solid Films 547:168–172

    Article  Google Scholar 

  4. Lu H, Zhai X, Liu W, Zhang M, Guo M (2015) Thin Solid Films 586:46–53

    Article  Google Scholar 

  5. Li CF, Hsu CY, Li YY (2014) J Alloy Comp 606:27–31

    Article  Google Scholar 

  6. Bai T, Xie Y, Hu J, Zhang C, Wang J (2015) J Alloy Comp 644:350–353

    Article  Google Scholar 

  7. Son DY, Im JH, Kim HS, Park NG (2014) J Phys Chem C 118:16567–16573

    Article  Google Scholar 

  8. Ahsanulhaq Q, Kim J-H, Hahn Y-B (2007) Nanotechnology 18:485307

    Article  Google Scholar 

  9. Kumarakuru H, Cherns D, Fuge GM (2011) Surf Coat Techn 205:5083–5087

    Article  Google Scholar 

  10. Venkatesh PS, Dong CL, Chen CL, Pong WF, Asokan K, Jeganathan K (2014) Mater Letter 116:206–208

    Article  Google Scholar 

  11. Alver U, Kılınç T, Bacaksız E, Küçükömeroğlu T, Nezir S, Mutlu İH, Aslan F (2007) Thin Solid Films 515:3448–3451

    Article  Google Scholar 

  12. Bacaksiz E, Parlak M, Tomakin M, Özçelik A, Karakız M, Altunbas M (2008) J Alloy Comp 466:447–450

    Article  Google Scholar 

  13. Sun Z-P, Liu L, Zhang L, Jia D-Z (2006) Nanotechnology 17:2266–2270

    Article  Google Scholar 

  14. Foo KL, Hashim U, Muhammad K, Voon CH (2014) Nanoscale Res Lett 9:1–10

    Article  Google Scholar 

  15. Duta M, Mihaiu S, Munteanu C, Anastasescu M, Osiceanu P, Marin A, Preda S, Nicolescu M, Modreanu M, Zaharescu M, Gartner M (2015) Appl Surf Sci 344:196–204

    Article  Google Scholar 

  16. Cittadini M, Sturaro M, Guglielmi M, Resmini A, Tredici IG, Anselmi-Tamburini U, Koshy P, Sorrell CC, Martucci A (2015) Sens Actuators B 213:493–500

    Article  Google Scholar 

  17. Weintraub B, Deng Y, Wang ZL (2007) J Phy Chem C Lett 111:10162–10165

    Article  Google Scholar 

  18. Song J, Lim S (2007) J Phys Chem C 111:596–600

    Article  Google Scholar 

  19. Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D (2004) J Am Chem Soc 126:62–63

    Article  Google Scholar 

  20. Kathalingam A, Park H-C, Kim S-D, Kim H-S, Velumani S, Mahalingam T (2015) J Mater Sci: Mater Electron 26:5724–5734

    Google Scholar 

  21. Paculba HMD, Alguno AC, Vequizo RM (2015) Mater Sci Eng 79:012022

    Google Scholar 

  22. Rafaie HA, Samat NA, Nor RM (2014) Mater Lett 137:297–299

    Article  Google Scholar 

  23. Malek MF, Mamat MH, Khusaimi Z, Sahdan MZ, Musa MZ, Zainun AR, Suriani AB, Md Sin ND, Abd Hamid SB, Rusop M (2014) J Alloy Comp 582:12–21

    Article  Google Scholar 

  24. Malgas GF, Motaung DE, Mhlongo GH, Nkosi SS, Mwakikunga BW, Govendor M, Arendse CJ, Muller TFG (2014) Thin Solid Films 555:100–106

    Article  Google Scholar 

  25. Cullity BD, Stock SR (2001) Elements of X-Ray diffraction, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  26. Goktas A, Aslan F, Mutlu IH (2014) J Alloy Comp 615:765–778

    Article  Google Scholar 

  27. Bose A, Maity T, Bysakh S, Seal A, Sen S (2010) Appl Surf Sci 256:6205–6212

    Article  Google Scholar 

  28. Voigt M, Klaumünzer M, Thiem H, Peukert W (2010) J Phys Chem C 114:6243–6249

    Article  Google Scholar 

  29. Chen H-W, Yang H-W, He H-M, Lee Y-M (2016) J Phys D Appl Phys 49:025306

    Article  Google Scholar 

  30. Farhat OF, Halim MM, Abdullah MJ, Ali MKM, Allam NK (2015) Beilstein J Nanotechnol 6:720–725

    Article  Google Scholar 

  31. Jeon S, Bang S, Lee S, Kwon S, Jeong W, Jeon H, Chang HJ, Park HH (2008) J Electrochem Soc 155:738–743

    Article  Google Scholar 

  32. Cho S (2009) Trans Elect Elect Mater 10:185–188

    Article  Google Scholar 

  33. Cheng AJ, Tzeng Y, Xu H, Alur S, Wang Y, Park M, Wu TH, Shannon C, Kim DJ, Wang D (2009) J App Phys 105:1–7

    Google Scholar 

  34. Park W, Kim JS, Yi GC (2004) App Phys Lett 85:5052–5054

    Article  Google Scholar 

  35. Li W, Reisdorffer F, Nguyen TP, Kwok HL (2013) J Mater Sci: Mater Electron 24:3788–3792

    Google Scholar 

  36. Kashif M, Ali ME, Ali SMU, Hashim U, Hamid SBA (2013) Nanoscale Res Lett 8:1–9

    Article  Google Scholar 

  37. Nakamura T, Yamada Y, Kusumori T, Minoura H, Muto H (2002) Thin Solid Films 411:60–64

    Article  Google Scholar 

  38. Sze SM, Ng KK (2006) Physics of semiconductor devices, 3rd edn. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  39. Holloway T, Mundle R, Dondapati H, Bahouraand M, Pradhan AK (2012) J Nanophoton 6:063507

    Article  Google Scholar 

  40. Wang Z, Huang B, Qin X, Zhang X, Wang P, Wei J, Zhan J, Jing X, Liu H, Xu Z, Cheng H, Wang X, Zheng Z (2009) Mater Letter 63:130–132

    Article  Google Scholar 

  41. Kim JJ, Kim KS, Jung GY (2011) J Mater Chem 21:7730–7735

    Article  Google Scholar 

  42. Tauc J (1974) Amorphous and liquid semiconductors. Plenum Press, New York

    Book  Google Scholar 

  43. Ellmer K, Klein A, Rech B (2007) Transparent conductive zinc oxide basics and applications in thin film solar cells. Springer, Berlin

    Google Scholar 

  44. Kim CE, Moon P, Kim S, Myoung JM, Jang HW, Bang J, Yun I (2010) Thin Solid Films 518:6304–6307

    Article  Google Scholar 

Download references

Acknowledgments

This work was a research corporation between Harran University and T.S.C.F Glass Company funded by Turkey’s Ministry of Science, Industry and Technology with the Project No. 0128.STZ.2013-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferhat Aslan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, F., Tumbul, A., Göktaş, A. et al. Growth of ZnO nanorod arrays by one-step sol–gel process. J Sol-Gel Sci Technol 80, 389–395 (2016). https://doi.org/10.1007/s10971-016-4131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4131-z

Keywords

Navigation