Skip to main content
Log in

Controlled surface modification of gold nanostructures with functionalized silicon polymers

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The stabilization of metal nanoparticles using surface modification has been intensively investigated. We propose an alternative to the use of surfactants, long-chain polymers or silica shells in order to provide easy and efficient stabilization of a wide range of metallic nanostructures. The prepared silicon oligomers were characterized, optimized and successfully used for surface modifications of nanospheres, nanobipyramids, nanorods of both gold and silver. The modified nanoparticles were then easily incorporated into monolithic sol–gel materials based on silica. This original route toward hybrid composite was efficiently used to prepare composite sol–gel materials with plasmonic nanostructures for optical applications.

Graphical Abstract

Specifically designed silicon polymers are used to efficiently stabilize metal nanoparticles and allow homogeneous dispersion into sol–gel materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qu S, Gao Y, Jiang X, Zeng H, Song Y, Qiu J, Zhu C, Hirao K (2003) Nonlinear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser. Opt Commun 224(4–6):321–327. doi:10.1016/s0030-4018(03)01761-9

    Article  Google Scholar 

  2. Qu SL, Zhao CJ, Jiang XW, Fang GY, Gao YC, Zeng HD, Song YL, Qui JR, Zhu CS, Hirao K (2003) Optical nonlinearities of space selectively precipitated Au nanoparticles inside glasses. Chem Phys Lett 368(3–4):352–358. doi:10.1016/S0009-2614(02)01885-7

    Article  Google Scholar 

  3. Porel S, Venkatram N, Rao DN, Radhakrishnan TP (2007) Optical power limiting in the femtosecond regime by silver nanoparticle-embedded polymer film. J Appl Phys 102(3):033107. doi:10.1063/1.2764239

    Article  Google Scholar 

  4. Porel S, Venkatram N, Rao DN, Radhakrishnan TP (2007) In situ synthesis of metal nanoparticles in polymer matrix and their optical limiting applications. J Nanosci Nanotechnol 7(6):1887–1892. doi:10.1166/jnn.2007.736

    Article  Google Scholar 

  5. Mangelson BF, Jones MR, Park DJ, Shade CM, Schatz GC, Mirkin CA (2014) Synthesis and characterization of a plasmonic-semiconductor composite containing rationally designed, optically tunable gold nanorod dimers and anatase TiO2. Chem Mater 26(12):3818–3824. doi:10.1021/cm5014625

    Article  Google Scholar 

  6. Wang D, Zhou ZH, Yang H, Shen KB, Huang Y, Shen S (2012) Preparation of TiO2 loaded with crystalline nano Ag by a one-step low-temperature hydrothermal method. J Mater Chem 22(32):16306–16311. doi:10.1039/c2jm16217b

    Article  Google Scholar 

  7. Besson S, Gacoin T, Ricolleau C, Boilot JP (2003) Silver nanoparticle growth in 3D-hexagonal mesoporous silica films. Chem Commun 3:360–361. doi:10.1039/b208357d

    Article  Google Scholar 

  8. Gacoin T, Besson S, Boilot JP (2006) Organized mesoporous silica films as templates for the elaboration of organized nanoparticle networks. J Phys Condens Matter 18(13):S85–S95. doi:10.1088/0953-8984/18/13/S06

    Article  Google Scholar 

  9. Pu-Wei Wu WC, Martini Ignacio B, Dunn Bruce, Schwartz Benjamin J, Yablonovitch Eli (2000) Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix. Adv Mater 12(19):1438–1441

    Article  Google Scholar 

  10. Battie Y, Destouches N, Bois L, Chassagneux F, Moncoffre N, Toulhoat N, Jamon D, Ouerdane Y, Parola S, Boukenter A (2009) Generation of an ordered layer of silver nanoparticles in mesostructured dielectric films. J Nanopart Res 12(3):1073–1082. doi:10.1007/s11051-009-9794-8

    Article  Google Scholar 

  11. Bois L, Bessueille F, Chassagneux F, Battie Y, Destouches N, Hubert C, Boukenter A, Parola S (2008) Silver nanoparticles growth in a mesoporous silica film templated with the F127 triblock copolymer. Colloids Surf A 325(1–2):86–92. doi:10.1016/j.colsurfa.2008.04.045

    Article  Google Scholar 

  12. Bois L, Chassagneux F, Battie Y, Bessueille F, Mollet L, Parola S, Destouches N, Toulhoat N, Moncoffre N (2010) Chemical growth and photochromism of silver nanoparticles into a mesoporous titania template. Langmuir 26(2):1199–1206. doi:10.1021/la902339j

    Article  Google Scholar 

  13. Bois L, Chassagneux F, Desroches C, Battie Y, Destouches N, Gilon N, Parola S, Stephan O (2010) Electroless growth of silver nanoparticles into mesostructured silica block copolymer films. Langmuir 26(11):8729–8736. doi:10.1021/la904491v

    Article  Google Scholar 

  14. Bois L, Chassagneux F, Parola S, Bessueille F, Battie Y, Destouches N, Boukenter A, Moncoffre N, Toulhoat N (2009) Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer PEO–PPO–PEO. J Solid State Chem 182(7):1700–1707. doi:10.1016/j.jssc.2009.01.044

    Article  Google Scholar 

  15. De S, De G (2008) In situ generation of Au nanoparticles in UV-curable refractive index controlled SiO2–TiO2–PEO hybrid films. J Phys Chem C 112:10378–10384

    Article  Google Scholar 

  16. Ferrara MC, Mirenghi L, Mevoli A, Tapfer L (2008) Synthesis and characterization of sol–gel silica films doped with size-selected gold nanoparticles. Nanotechnology 19(36):365706. doi:10.1088/0957-4484/19/36/365706

    Article  Google Scholar 

  17. Pal S, De G (2008) Formation of Au–Pt bimetallic nanoparticles in a two-layer SiO2 films doped with Au and Pt, respectively, through interlayer diffusion. Phys Chem Chem Phys 10(27):4062–4066. doi:10.1039/b803052a

    Article  Google Scholar 

  18. Martinez ED, Boissiere C, Grosso D, Sanchez C, Troiani H, Soler-Illia GJAA (2014) Confinement-induced growth of au nanoparticles entrapped in mesoporous TiO2 thin films evidenced by in situ thermo-ellipsometry. J Phys Chem C 118(24):13137–13151. doi:10.1021/jp500429b

    Article  Google Scholar 

  19. Formanek F, Takeyasu N, Tanaka T, Chiyoda K, Ishikawa A, Kawata S (2006) Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization. Opt Express 14(2):800–809

    Article  Google Scholar 

  20. Kaneko K, Sun H-B, Duan X-M, Kawata S (2003) Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix. Appl Phys Lett 83(7):1426. doi:10.1063/1.1601302

    Article  Google Scholar 

  21. Kalfagiannis N, Karagiannidis PG, Pitsalidis C, Hastas N, Panagiotopoulos NT, Patsalas P, Logothetidis S (2014) Performance of hybrid buffer poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) layers doped with plasmonic silver nanoparticles. Thin Solid Films 560:27–33. doi:10.1016/j.tsf.2014.01.032

    Article  Google Scholar 

  22. Stellacci F, Bauer CA, Meyer-Friedrichsen T, Wenseleers W, Alain V, Kuebler SM, Pond SJK, Zhang Y, Marder SR, Perry JW (2002) Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning. Adv Mater 14(3):194–198

    Article  Google Scholar 

  23. Kinnear C, Dietsch H, Clift MJD, Endes C, Rothen-Rutishauser B, Petri-Fink A (2013) Gold nanorods: controlling their surface chemistry and complete detoxification by a two-step place exchange. Angew Chem Int Ed 52:1934–1938

    Article  Google Scholar 

  24. Zhang Z, Lin M (2014) Fast loading of PEG-SH on CTAB-protected gold nanorods. RSC Adv 4:17760–17767

    Article  Google Scholar 

  25. Li J, Zhu B, Zhu Z, Zhang Y, Yao X, Tu S, Liu R, Jia S, Yang CJ (2015) Simple and rapid functionalization of gold nanorods with oligonucleotides using an mPEG-SH/Tween 20-assisted approach. Langmuir 31(28):7869–7876

    Article  Google Scholar 

  26. Thierry B, Ng J, Krieg T, Griesser HJ (2009) A robust procedure for the functionalization of gold nanorods and noble metal nanoparticles. Chem Commun 1(13):1724–1726

    Article  Google Scholar 

  27. Alkilany AM, Thompson LB, Murphy CJ (2010) Polyelectrolyte coating provides a facile route to suspend gold nanorods in polar organic solvents and hydrophobic polymers. ACS Appl Mater Interfaces 2(12):3417–3421

    Article  Google Scholar 

  28. Gole A, Murphy CJ (2005) Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization. Chem Mater 17(6):1325–1330. doi:10.1021/cm048297d

    Article  Google Scholar 

  29. Sivapalan ST, Vella JH, Yang TK, Dalton MJ, Swiger RN, Haley JE, Cooper TM, Urbas AM, Tan LS, Murphy CJ (2012) Plasmonic enhancement of the two photon absorption cross section of an organic chromophore using polyelectrolyte-coated gold nanorods. Langmuir 28(24):9147–9154. doi:10.1021/la300762k

    Article  Google Scholar 

  30. Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2006) Silica-coating and hydrophobation of CTAB-stabilized gold nanorods. Chem Mater 18:2465–2467

    Article  Google Scholar 

  31. Yang J, Wu J, Wu Y, Wang J, Chen C (2005) Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship. Chem Phys Lett 416:215–219

    Article  Google Scholar 

  32. Mitamura K, Imae T, Saito N, Takai O (2007) Fabrication and self-assembly of hydrophobic gold nanorods. J Phys Chem B 111(30):8891–8898

    Article  Google Scholar 

  33. Chateau D, Liotta A, Vadcard F, Navarro JR, Chaput F, Lerme J, Lerouge F, Parola S (2015) From gold nanobipyramids to nanojavelins for a precise tuning of the plasmon resonance to the infrared wavelengths: experimental and theoretical aspects. Nanoscale 7:1934–1943. doi:10.1039/c4nr06323f

    Article  Google Scholar 

  34. Navarro JR, Lerouge F, Micouin G, Cepraga C, Favier A, Charreyre MT, Blanchard NP, Lerme J, Chaput F, Focsan M, Kamada K, Baldeck PL, Parola S (2014) Plasmonic bipyramids for fluorescence enhancement and protection against photobleaching. Nanoscale 6:5138–5145. doi:10.1039/c3nr06425e

    Article  Google Scholar 

  35. Navarro JR, Manchon D, Lerouge F, Cottancin E, Lerme J, Bonnet C, Chaput F, Mosset A, Pellarin M, Parola S (2012) Synthesis, electron tomography and single-particle optical response of twisted gold nano-bipyramids. Nanotechnology 23:145707. doi:10.1088/0957-4484/23/14/145707

    Article  Google Scholar 

  36. Navarro JR, Manchon D, Lerouge F, Blanchard NP, Marotte S, Leverrier Y, Marvel J, Chaput F, Micouin G, Gabudean AM, Mosset A, Cottancin E, Baldeck PL, Kamada K, Parola S (2012) Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake. Nanotechnology 23:465602. doi:10.1088/0957-4484/23/46/465602

    Article  Google Scholar 

  37. Zieba R, Desroches C, Chaput F, Carlsson M, Eliasson B, Lopes C, Lindgren M, Parola S (2009) Preparation of functional hybrid glass material from platinum (II) complexes for broadband nonlinear absorption of light. Adv Func Mater 19(2):235–241. doi:10.1002/adfm.200801008

    Article  Google Scholar 

  38. Chateau D, Chaput F, Lopes C, Lindgren M, Brannlund C, Ohgren J, Djourelov N, Nedelec P, Desroches C, Eliasson B, Kindahl T, Lerouge F, Andraud C, Parola S (2012) Silica hybrid sol–gel materials with unusually high concentration of Pt-organic molecular guests: studies of luminescence and nonlinear absorption of light. ACS Appl Mater Interfaces 4(5):2369–2377. doi:10.1021/am2015537

    Article  Google Scholar 

  39. Château D, Bellier Q, Chaput F, Feneyrou P, Berginc G, Maury O, Andraud C, Parola S (2014) Efficient hybrid materials for optical power limiting at telecommunication wavelengths. J Mater Chem C 2(26):5105. doi:10.1039/c4tc00193a

    Article  Google Scholar 

  40. Lundén H, Liotta A, Chateau D, Lerouge F, Chaput F, Parola S, Brännlund C, Ghadyani Z, Kildemo M, Lindgren M, Lopes C (2015) Dispersion and self-orientation of gold nanoparticles in sol–gel hybrid silica–optical transmission properties. J Mater Chem C 3(5):1026–1034. doi:10.1039/c4tc02353f

    Article  Google Scholar 

  41. Abadeer NS, Brennan MR, Wilson WL, Murphy CJ (2014) Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. ACS Nano 8(8):8392–8406

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephane Parola.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chateau, D., Liotta, A., Gregori, D. et al. Controlled surface modification of gold nanostructures with functionalized silicon polymers. J Sol-Gel Sci Technol 81, 147–153 (2017). https://doi.org/10.1007/s10971-016-4116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4116-y

Keywords

Navigation