Skip to main content
Log in

Fabrication of La x Nd0.67−x Sr0.33MnO3 polycrystalline ceramics by sol–gel method

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A systematic experimental study for La x Nd0.67−x Sr0.33MnO3 polycrystalline ceramic samples (x = 0.00, 0.07, 0.08, 0.09, 0.1, 0.2 and 0.3) were prepared by sol–gel method. The crystal structures were analyzed by X-ray diffraction, which reveals that all the samples are single-phase without any detectable secondary phases. The grain size and surface morphology were investigated by scanning electron microscope, which indicates that the ceramic samples with better crystallization have high density and chemical uniformity. The relation between resistivity and temperature shows that the resistivity decreases and the metal–insulator transition temperature shifts to higher temperature with the substitution La ion for Nd ion, which gives rise to increasing transition broadening temperature, and consequently decreases the temperature coefficient of resistivity. It is mainly due to the substitution La for Nd increases the A-site average cationic radius and thus the Mn–O–Mn angle increases, which gives rise to the double exchange between Mn3+ and Mn4+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dhahri A, Rhouma FIH, Mnefgui S et al (2014) Room temperature critical behavior and magnetocaloric properties of La0.6Nd0.1(Ca, Sr)0.3Mn0.9V0.1O3. Ceram Int 40:459–464

    Article  Google Scholar 

  2. Selmi A, M’nassri R, Cheikhrouhou-Koubaa W et al (2015) Influence of transition metal doping (Fe Co, Ni and Cr) on magnetic and magnetocaloric properties of Pr0.7Ca0.3MnO3 manganites. Ceram Int 41:10177–10184

    Article  Google Scholar 

  3. Woodward PM, Vogt T, Cox DE et al (1998) Influence of cation size on the structural features of Ln1/2A1/2MnO3 perovskites at room temperature. Chem Mater 10:3652–3665

    Article  Google Scholar 

  4. Wang ZM, Ni G, Sang H et al (2001) The effect of average A-site cation radius on TC in perovskite manganites. J Magn Magn Mater 234:213–217

    Article  Google Scholar 

  5. de Ramesh A, Singh R (2015) Effect of Pr doping on the properties of Bi0.5−x Pr x Ca0.5MnO3(0 ≤ x ≤ 0.50) manganites. Ceram Int 41:4759–4767

    Article  Google Scholar 

  6. Yang XS, Yang LQ, Lv L et al (2012) Magnetic phase transition in La0.7Sr0.3MnO3/Ta2O5 ceramic composites. Ceram Int 38:2575–2578

    Article  Google Scholar 

  7. Feng M, Li HB, Liu M et al (2009) Magnetic and magnetoresistive properties of La0.65−x Eu x Sr0.35MnO3. Ceram Int 35:345–347

    Article  Google Scholar 

  8. Fan JY, Xu LS, Zhang XY et al (2015) Effect of A-site average radius and cation disorder on magnetism and electronic properties in manganite La0.6A0.1Sr0.3MnO3(A = Sm, Dy, Er). J Mater Sci 50:2130–2137

    Article  Google Scholar 

  9. Cao DY, Zhang YY, Dong WX (2015) Structure, magnetic and transport properties of La0.7Ca0.3−x Sr x MnO3 thin films by sol–gel method. Ceram Int 41:S381–S386

    Article  Google Scholar 

  10. Baaziz H, Tozri A, Dhahri E (2015) Effect of particle size reduction on the structural, magnetic properties and the spin excitations in ferromagnetic insulator La0.9Sr0.1MnO3 nanoparticles. Ceram Int 41:2955–2962

    Article  Google Scholar 

  11. Liu SM, Zhu XB, Yang J (2006) The effect of grain boundary on the properties of La0.7Sr0.3MnO3 thin films prepared by chemical solution deposition. Ceram Int 32:157–162

    Article  Google Scholar 

  12. Mnefgui S, Zaidi N, Dhahri N et al (2015) Electrical transport properties and transport–entropy correlations in La0.57Nd0.1Sr0.33MnO3 manganite. J Magn Magn Mater 384:219–223

    Article  Google Scholar 

  13. Irmak AE, Coskun A, Tasarkuyu E (2010) The influence of the sintering temperature on the structural and the magnetic properties of doped manganites: La0.95Ag0.05MnO3 and La0.75Ag0.25MnO3. J Magn Magn Mater 322:945–951

    Article  Google Scholar 

  14. Lide M, Martinez R, Ehrenberg H et al (2000) Disorder effects on structural and electronic transitions in high tolerance factor manganite perovskites. Solid State Sci 2:11–16

    Google Scholar 

  15. Smolyaninova VN, Lofland SE, Hill C et al (2002) Effect of A-site cation disorder on charge ordering and ferromagnetism of La0.5Ca0.5−y Ba y MnO3. J Magn Magn Mater 248:348–354

    Article  Google Scholar 

  16. Yin XP, Liu X, Yan YZ et al (2014) Preparation of La0.67Ca0.33MnO3:Ag x polycrystalline by sol–gel method. J Sol–Gel Sci Technol 70:361–365

    Article  Google Scholar 

  17. Theingi M, Ma J, Zhang H et al (2013) Study of structural and electrical transport properties of polycrystalline La1−x Ca x MnO3 (x = 0.33, 0.5 and 0.9) prepared by a coprecipitation method. Adv Mater Res 652–654:576–580

    Article  Google Scholar 

  18. Andrews K, Kaye AB (2015) Optimized procedure for sol–gel production of La2/3Ca1/3MnO3 thin films. J Sol–Gel Sci Technol 76:372–377

    Article  Google Scholar 

  19. Debnath JC, Zeng R, Strydom AM et al (2013) Ideal Ericsson cycle magnetocaloric effect in (La0.9Gd0.1)0.67Sr0.33MnO3 single crystalline nanoparticles. J Alloys Compd 555:33–38

    Article  Google Scholar 

  20. Vertruyen B, Fagnard JF, Vanderbemden PH et al (2007) Electrical transport and magnetic properties of Mn3O4–La0.7Ca0.3MnO3 ceramic composites prepared by a one-step spray-drying technique. J Eur Ceram 27:3923–3926

    Article  Google Scholar 

  21. Shlyakhtin OA, Oh YJ, Yu D et al (2000) Preparation of dense La0.7Ca0.3MnO3 ceramics from freeze-dried precursors. J Eur Ceram 20:2047–2054

    Article  Google Scholar 

  22. Zhao J, Wang G (2009) Magnetocaloric properties of (La0.67−x Gd x )Sr0.33MnO3 polycrystalline nanoparticles. J Magn Magn Mater 321:2977–2980

    Article  Google Scholar 

  23. Matos I, Sério S, Lopes ME et al (2011) Effect of the sintering temperature on the properties of nanocrystalline Ca1−x Sm x MnO3 (0 ≤ x ≤ 0.4) powders. J Alloys Compd 509:9617–9626

    Article  Google Scholar 

  24. Fonseca FC, Souza JA, Jardim RF et al (2004) Transport properties of La0.6Y0.1Ca0.3MnO3 compounds with different interfaces. J Eur Ceram 24:1271–1275

    Article  Google Scholar 

  25. Wang LM, Wang CY, Tseng CC et al (2012) Correlation of the temperature coefficient of resistivity for doped manganites to the transition temperature, polaron binding energy, and magnetic order. Appl Phys Lett 100:232403

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11564021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, H., Jin, F. et al. Fabrication of La x Nd0.67−x Sr0.33MnO3 polycrystalline ceramics by sol–gel method. J Sol-Gel Sci Technol 80, 168–173 (2016). https://doi.org/10.1007/s10971-016-4046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4046-8

Keywords

Navigation