Skip to main content
Log in

Hard coatings for CR-39 based on Al2O3–ZrO2 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethoxysilane (TEOS) nanocomposites

  • Original Paper: : Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The optical and mechanical properties of single layer nanocomposite films, with refractive indices (n) matched for an allyl diglycol carbonate (CR-39) substrate, with n = 1.50, were investigated. Alumina nanoparticles (ALO NPs 20 nm) and zirconia nanoparticles (ZrAc NPs 50 nm) in colloidal form were incorporated in the nanocomposites to improve film strength and control the refractive index. The coating solution was prepared from hydrolysis between tetraethoxysilane (TEOS) and 3-glycidoxypropyl trimethoxysilane (GPTMS) in the presence of colloidal nanoparticles. GPTMS functioned as a matrix for the nanocomposite film and promoted adhesion between the film and substrate. Meanwhile, TEOS, a four-armed crosslink network, provided internal structural strength through network formation. The optimum ratio of GPTMS:TEOS:NPs was at 28:12:24 by weight percent (wt%). The nanocomposite film with 24 wt% of ZrAc yielded a harder film with a slightly higher refractive index (n = 1.53 at 550 nm) than the CR-39 substrate (n = 1.51 at 550 nm). The film with 24 wt% of ALO showed a refractive index close to that of CR-39, but possessed poorer scratch resistance. The coating film at 12:12 wt% of ALO:ZrAc provided a refractive index suitable for the CR-39 substrate. The film also showed good scratch resistance, good adhesion, and excellent optical properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu K, Hu Y-q (2010) Fabrication of transparent Pu/ZrO2 nanocomposite coatings with high refractive index. Chin J Polym Sci 28(1):13–20

    Article  Google Scholar 

  2. Li Y, Tao P, Siegel RW, Schadler LS (2013) Multifunctional silicone nanocomposites for advanced LED encapsulation. MRS Proc 1547:161–166

    Article  Google Scholar 

  3. J-g Liu, Nakamura Y, Ogura T, Shibasaki Y, Ando S, Ueda M (2008) Optically transparent sulfur-containing polyimide–TiO2 nanocomposite films with high refractive index and negative pattern formation from poly(amic acid)–TiO2 nanocomposite film. Chem Mater 20(1):273–281

    Article  Google Scholar 

  4. Schottner G, Rose K, Posset U (2003) Scratch and abrasion resistant coatings on plastic lenses—state of the art, current developments and perspectives. J Sol–Gel Sci Technol 27(1):71–79

    Article  Google Scholar 

  5. Wu LY, Chwa E, Chen Z, Zeng X (2008) A study towards improving mechanical properties of sol–gel coatings for polycarbonate. Thin Solid Films 516(6):1056–1062

    Article  Google Scholar 

  6. Zhang S, Sun D, Fu Y, Du H (2003) Recent advances of superhard nanocomposite coatings: a review. Surf Coat Technol 167(2–3):113–119

    Article  Google Scholar 

  7. Chang L, Verburg JA Process for coating a lens of synthetic polymer with a durable abrasion resistant vitreous composition. US Patent No. 3991234, 9 Nov 1976

  8. Jang D-G, Soo GR, Kim J-H, Jin W-Y, Seo J-M, Kwon M-J, Lee S-M (2009) Synthesis of novel polythiol for plastic optical lens and its ophthalmic lens. Bull Korean Chem Soc 30(10):2227–2232

    Article  Google Scholar 

  9. Cheng L-T, Tsai M-Y, Tseng WJ, Hsiang H-I, Yen F-S (2008) Boehmite coating on θ-Al2O3 particles via a sol–gel route. Ceram Int 34(2):337–343

    Article  Google Scholar 

  10. Sangermano M, Voit B, Sordo F, Eichhorn KJ, Rizza G (2008) High refractive index transparent coatings obtained via UV/thermal dual-cure process. Polymer 49(8):2018–2022

    Article  Google Scholar 

  11. Obreja P, Cristea D, Purica M, Gavrila R, Comanescu F (2007) Polymers doped with metal oxide nanoparticles with controlled refractive index. Polimery 52(9):679–685

    Google Scholar 

  12. Vorse DJ, Ferrell VE Gausman JH Aqueous protective and adhesion promoting composition. US Patent No. 5728203, 17 Mar 1998

  13. Jaglarz J, Karasinski P, Skoczek E (2011) Optical properties of silica antireflective films formed in sol–gel processes. Phys Status Solidi C 8(9):2645–2648

    Article  Google Scholar 

  14. Figueroa S, Desimoni J, Rivas PC, Cervera MM, Caracoche MC, de Sanctis O (2005) Hyperfine study on sol–gel derived-hematite doped zirconia. Chem Mater 17(13):3486–3491

    Article  Google Scholar 

  15. Kasemann R, Schmidt HK, Wintrich E (1994) A new type of a sol–gel-derived inorganic–organic nanocomposite. In: MRS Proceedings. Cambridge University Press, p 915

  16. Sepeur S, Kunze N, Werner B, Schmidt H (1999) UV curable hard coatings on plastics. Thin Solid Films 351(1):216–219

    Article  Google Scholar 

  17. Chang C-C, Hsieh C-Y, Huang F-H, Cheng L-P (2015) Preparation of zirconia loaded poly(acrylate) antistatic hard coatings on PMMA substrates. J Appl Polym Sci 132(33):42411–42416

    Article  Google Scholar 

  18. Huang WEI, Zheng T, Li DI (2006) Research on water based coating containing nano-silica for magnesium alloy. Int J Mod Phys B 20:3629–3634

    Article  Google Scholar 

  19. Chen J, Zhou Y, Nan Q, Ye X, Sun Y, Zhang F, Wang Z (2007) Preparation and properties of optically active polyurethane/TiO2 nanocomposites derived from optically pure 1,1′-binaphthyl. Eur Polym J 43(10):4151–4159

    Article  Google Scholar 

  20. Cinausero N, Azema N, Cochez M, Ferriol M, Essahli M, Ganachaud F, Lopez-Cuesta J-M (2008) Influence of the surface modification of alumina nanoparticles on the thermal stability and fire reaction of PMMA composites. Polym Adv Technol 19(6):701–709

    Article  Google Scholar 

  21. Jeon SJ, Lee JJ, Kim W, Chang TS, Koo SM (2008) Hard coating films based on organosilane-modified boehmite nanoparticles under UV/thermal dual curing. Thin Solid Films 516(12):3904–3909

    Article  Google Scholar 

  22. Hwang D, Moon J, Shul Y, Jung K, Kim D, Lee D (2003) Scratch resistant and transparent UV-protective coating on polycarbonate. J Sol–Gel Sci Technol 26(1–3):783–787

    Article  Google Scholar 

  23. Mogami T, Kawashima H (1985) Photochromic coating composition and photochromic synthetic resin ophthalmic lens. US Patent No. 4556605, 3 Dec 1985

  24. Pech D, Steyer P, Loir A-S, Sánchez-López JC, Millet J-P (2006) Analysis of the corrosion protective ability of PACVD silica-based coatings deposited on steel. Surf Coat Technol 201(1–2):347–352

    Article  Google Scholar 

  25. Ruano JM, Glidle A, Cleary A, Walmsley A, Aitchison JS, Cooper JM (2003) Design and fabrication of a silica on silicon integrated optical biochip as a fluorescence microarray platform. Biosens Bioelectron 18(2–3):175–184

    Article  Google Scholar 

  26. Franta D, Ohlídal I, Petrýdes D (2005) Optical characterization of thin films by the combined method of spectroscopic ellipsometry and spectroscopic photometry. Vacuum 80(1–3):159–162

    Article  Google Scholar 

  27. Ll Y (2012) Synthesis, structure, and characterization of hybrid solids containing polyoxometalates and ruthenium polypyridyl complexes. Western Kentucky University, Kentucky

    Google Scholar 

  28. Mase S, Otani N, Yoshida M Process for producing plastic lens comprising a primer layer, a hard coat layer and an antireflection coating. US Patent No. 5693366, 2 Dec 1997

  29. French HE, Kruse JM Method for providing an abrasion resistant coating for plastic ophthalmic lenses and the resulting lenses. US Patent No. 3953115, 27 April 1976

  30. Clark HA Pigment-free coating compositions. US Patent No. 3986997, 19 Oct 1976

  31. Campbell DH, Echols JE, Ohrbom WH Scratch resistant clearcoats containing surface reactive microparticles and method therefore. US Patent No. 5853809, 29 Dec 1998

  32. Petrik P, Khánh NQ, Horváth ZE, Zolnai Z, Bársony I, Lohner T, Fried M, Gyulai J, Schmidt C, Schneider C, Ryssel H (2002) Characterisation of BaxSr1−xTiO3 films using spectroscopic ellipsometry, Rutherford backscattering spectrometry and X-ray diffraction. J Non-Cryst Solids 303(1):179–184

    Article  Google Scholar 

  33. Mohamed S (2011) FTIR and spectroscopic ellipsometry investigations of the electron beam evaporated silicon oxynitride thin films. Phys B Condens Matter 406(2):211–215

    Article  Google Scholar 

  34. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(06):1564–1583

    Article  Google Scholar 

  35. Santos PdS, Coelho ACV, Santos HdS, Kiyohara PK (2009) Hydrothermal synthesis of well-crystallised boehmite crystals of various shapes. Mater Res 12(4):437–445

    Article  Google Scholar 

  36. Chen C-W, Yang X-S, Chiang AS (2009) An aqueous process for the production of fully dispersible t-ZrO2 nanocrystals. J Taiwan Inst Chem Eng 40(3):296–301

    Article  Google Scholar 

  37. Duan G, Zhang C, Li A, Yang X, Lu L, Wang X (2008) Preparation and characterization of mesoporous zirconia made by using a poly(methyl methacrylate) template. Nanoscale Res Lett 3(3):118–122

    Article  Google Scholar 

  38. Asuka M, Sigmund WM (2011) Nanoparticle sol–gel composite hybrid transparent coating materials. US Patent No. 20110003142 A1, 6 Jan 2011

  39. French HE, Kruse JM Abrasion resistant coating for polycarbonate substrates. US Patent No. 4006271, 1 Feb 1977

  40. Yoshizumi M Antistatic transparent coating composition. US Patent No. 4431764, 14 Feb 1984

  41. Gaillard S, Armbruster V, Hill MA, Gharbi T, Fromm M (2005) Production and validation of CR-39-based dishes for α-particle radiobiological experiments. Radiat Res 163(3):343–350

    Article  Google Scholar 

  42. Dadbin S, Chaplin R (2001) Morphology and mechanical properties of interpenetrating polymer networks of poly(allyl diglycol carbonate) and rigid polyurethane. J Appl Polym Sci 81(14):3361–3370

    Article  Google Scholar 

  43. Petrik P, Khanh N, Horvath Z, Zolnai Z, Bársony I, Lohner T, Fried M, Gyulai J, Schmidt C, Schneider C (2002) Characterisation of BaxSr1−xTiO3 films using spectroscopic ellipsometry, Rutherford backscattering spectrometry and X-ray diffraction. J Non-Cryst Solids 303(1):179–184

    Article  Google Scholar 

  44. Rebib F, Tomasella E, Micheli V, Eypert C, Cellier J, Laidani N (2009) Effect of composition inhomogeneity in a-SiOxNy thin films on their optical properties. Opt Mater 31(3):510–513

    Article  Google Scholar 

  45. Luo K, Zhou S, Wu L (2009) High refractive index and good mechanical property UV-cured hybrid films containing zirconia nanoparticles. Thin Solid Films 517(21):5974–5980

    Article  Google Scholar 

  46. Chen Z, Wu LY, Chwa E, Tham O (2008) Scratch resistance of brittle thin films on compliant substrates. Mater Sci Eng A 493(1):292–298

    Article  Google Scholar 

  47. Kobayashi A (2004) Adherence of zirconia composite coatings produced by gas tunnel-type plasma spraying. Vacuum 73(3):511–517

    Article  Google Scholar 

  48. Perry AJ (1983) Scratch adhesion testing of hard coatings. Thin Solid Films 107(2):167–180

    Article  Google Scholar 

  49. Trabelsi O, Tighzert L, Jbara O, Hadjadj A (2011) Synthesis via sol–gel process and characterization of novel organic–inorganic coatings. J Non-Cryst Solids 357(24):3910–3916

    Article  Google Scholar 

  50. Myung IH, Ahn MS, Kang DP (2007) Properties of sol–gel coating film synthesized from nano boehmite and methyltrimethoxysilane. Mater Sci Forum 544–545:1041–1044

    Article  Google Scholar 

Download references

Acknowledgments

R.C. was supported by the TGIST scholarship (Grant No. TG-01-52-017, Scholar ID: TG-44-14-52-017D). We are thankful to Narudom Srisawang and Asst. Prof. Chayanisa Chitichotpanya, Department of Chemistry, Faculty of Science, Mahidol University for the nanoindentation test. The authors are also grateful to the National Electronics and Computer Technology Center (NECTEC), NSTDA and the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand. This project is partially supported by Thai Optical Group Public Company Limited (TOG) and NANOTEC Center of Excellence at Mahidol University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toemsak Srikhirin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chantarachindawong, R., Osotchan, T., Chindaudom, P. et al. Hard coatings for CR-39 based on Al2O3–ZrO2 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethoxysilane (TEOS) nanocomposites. J Sol-Gel Sci Technol 79, 190–200 (2016). https://doi.org/10.1007/s10971-016-4006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4006-3

Keywords

Navigation