Skip to main content

Advertisement

Log in

Microstructure, ferroelectric and dielectric properties in Nd and Ti co-doped BiFeO3 thin film

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nd (3 %) and Ti (2 %) co-doped BiFeO3 (BNFTO) thin film was deposited on indium tin oxide-coated glass substrate by a metal organic decomposition process. The BNFTO film exhibits a single perovskite phase with random orientation and good insulating property with low leakage current. Asymmetrical polarization–electric field loops are observed in the BNFTO film: This is mainly attributed to the role of oxygen vacancy-related defect complexes in the film. Additionally, the capacitance of the sample is strongly dependent on both the applied voltage and measuring frequency. Furthermore, with the increase in applied voltages or decrease in frequencies, the dielectric tunability is gradually enhanced. The related physics mechanism for the enhanced performance is also discussed. High dielectric constant of 165, dielectric tunability of 27 % and figure of merit of 13.5 are achieved when a measuring frequency of 1 kHz is applied. These present results can be regarded as a base for further development of high-performance BiFeO3 films.

Graphical Abstract

Polarization–electric field (PE) and capacitance–voltage (CV) curves of the BNFTO film measured under various electric fields and applied bias voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Trolier-Mckinstry S, Muralt P (2004) J Electroceram 12:7–17

    Article  Google Scholar 

  2. Ning PF, Li LX, Zhang XY, Wang MJ, Xiao WS (2012) Mater Lett 87:5–8

    Article  Google Scholar 

  3. Lohse O, Bolten D, Grossmann M, Waser R, Harter W, Schindler G (1998) Mater Res Soc Symp Proc 493:267–277

    Article  Google Scholar 

  4. Dutta S, Chatterjee R (2015) Mater Sci Eng B 198:74–79

    Article  Google Scholar 

  5. Barman R, Kaur D (2015) J Alloys Compd 644:506–512

    Article  Google Scholar 

  6. Wu JG, Zhang BY, Wang XP, Wang J, Zhu JG, Xiao DQ (2013) Mater Res Bull 48:2973–2977

    Article  Google Scholar 

  7. Gaur A, Singh P, Choudhary N, Kumar D, Shariq M, Singh K, Kaur N, Kaur D (2011) Phys B 406:1877–1882

    Article  Google Scholar 

  8. Liu H, Liu ZL, Yao KL (2007) J Sol-Gel Sci Technol 41:123–128

    Article  Google Scholar 

  9. Liu HR, Avrutin V, Zhu CY, Ozgur U, Yang J, Lu CZ, Morkoc H (2013) J Appl hys 113:044108

    Article  Google Scholar 

  10. Kim KT, Kim C, Senior DS, Kim DS, Yoon YK (2014) Thin Solid Films 565:172–178

    Article  Google Scholar 

  11. Yan DX, Luo LZ, Zhang YB, Peng ZH, Liu H, Xiao DQ, Liu TW, Lai XC, Zhu JG (2015) Ceram Int 41:S520–S525

    Article  Google Scholar 

  12. Wu JG, Xiao DQ, Wang YY, Zhu JG, Zhu JL, Xie RS (2008) J Am Ceram Soc 91:3786–3788

    Article  Google Scholar 

  13. Padmini P, Taylor TR, Lefevre MJ, Nagra AS, York RA, Speck JS (1999) Appl Phys Lett 81:3186–3188

    Article  Google Scholar 

  14. Catalan G, Scott JF (2009) Adv Mater 21:2463–2485

    Article  Google Scholar 

  15. Hu GD, Cheng X, Wu WB, Yang CH (2007) Appl Phys Lett 91:232909

    Article  Google Scholar 

  16. Hu GD, Fan SH, Yang CH, Wu WB (2008) Appl Phys Lett 92:192905

    Article  Google Scholar 

  17. Jiang B, Li XL, Zhang HY, Sun W, Liu JJ, Hu GD (2012) Appl Phys Lett 100:172904

    Article  Google Scholar 

  18. Kawae T, Terauchi Y, Tsuda H, Kumeda M, Morimoto A (2009) Appl Phys Lett 94:112904

    Article  Google Scholar 

  19. Kawae T, Tsuda HS, Morimoto A (2008) Appl Phys Express 1:051601

    Article  Google Scholar 

  20. Dai HY, Xue RZ, Chen ZP, Li T, Chen J, Xiang HW (2014) Ceram Int 40:15617–15622

    Article  Google Scholar 

  21. Mojarad SA, Goss JP, Kwa KSK, Zhou ZY, Al-Hamadany R, Appleby DJR, Ponon NK, O’Neill A (2012) Appl Phys Lett 101:172507

    Article  Google Scholar 

  22. Park BH, Noh TW, Lee J, Kim CY, Jo W (1997) Appl Phys Lett 70:1101

    Article  Google Scholar 

  23. Warren WL, Tuttle BA, Dimos D, Pike GE, Al-Shareef HN, Ramesh R, Evans JT (1996) Jpn J Appl Phys 35:1521

    Article  Google Scholar 

  24. Park BH, Hyun SJ, Moon CR, Choe BD, Lee J, Kim CY, Jo W, Noh TW (1998) J Appl Phys 84:4428–4435

    Article  Google Scholar 

  25. Kholkin AL, Brooks KG, Taylor DV, Hiboux S, Setter N (1998) Integr Ferroelectr 22:525–533

    Article  Google Scholar 

  26. Jeon BC, Lee D, Lee MH, Yang SM, Chae SC, Song TK, Bu SD, Chung JS, Yoon JG, Noh TW (2013) Adv Mater 25:5643–5649

    Article  Google Scholar 

  27. Gao C, Yang J, Meng XJ, Lin T, Ma JH, Sun JL, Chu JH (2011) Appl Phys A 104:123–128

    Article  Google Scholar 

  28. Zhang XY, Song Q, Xu F, Ong CK (2009) Appl Phys Lett 94:022907

    Article  Google Scholar 

  29. Nayak M, Tseng TY (2002) Thin Solid Films 408:194–199

    Article  Google Scholar 

  30. Wang J, Zhang TJ, Xiang JH, Zhang BS (2008) Mater Chem Phys 108:445–448

    Article  Google Scholar 

  31. Ren YJ, Zhu XH, Zhang CY, Zhu JL, Zhu JG, Xiao DQ (2014) Ceram Int 40:2489–2493

    Article  Google Scholar 

  32. Zhang Y, Pang LH, Lu MH, Gu ZB, Zhang ST, Yuan CS, Chen YF (2008) Appl Surf Sci 254:6762–6765

    Article  Google Scholar 

  33. Zhang ST, Zhang Y, Luo ZL, Lu MH, Gu ZB, Chen YF (2009) Appl Surf Sci 255:5092–5095

    Article  Google Scholar 

  34. Cheng M, Tan GQ, Xue X, Xia A, Ren HJ (2012) Phys B 407:3360–3363

    Article  Google Scholar 

  35. Xu ZS, Hao XH, An SL (2015) J Mater Sci Mater Electron 26:4318–4324

    Article  Google Scholar 

  36. Wei CP, Wu JM, Huang HE, Bor HY (2007) Thin Solid Films 515:3982–3986

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51002064 and 51372100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. H. Yang or G. D. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, P.P., Yang, C.H., Geng, F.J. et al. Microstructure, ferroelectric and dielectric properties in Nd and Ti co-doped BiFeO3 thin film. J Sol-Gel Sci Technol 78, 559–565 (2016). https://doi.org/10.1007/s10971-016-3977-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-3977-4

Keywords

Navigation