Skip to main content
Log in

Preparation and phase transition properties of Ti-doped VO2 films by sol–gel process

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Pure and Ti-doped vanadium dioxide (VO2) thin films were deposited on muscovite substrates using an inorganic sol–gel method. The crystallinity, stoichiometry, surface morphology and phase transition properties of the films were investigated using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope and in situ FTIR measurement, respectively. The results indicated that all the VO2 films exhibited polycrystalline structure, with a (011) preferred orientation. But Ti doping affected the morphology of the films remarkably, which then led to varied phase transition properties. Particularly, the phase transition temperature elevated by increasing the doping concentration of Ti (from 61 °C for pure film to 71.5 °C for the film doped with 2.8 at.% Ti), and the hysteresis loop decreased simultaneously. This study proposed a new method to prepare Ti-doped VO2 film and provided considerable insights for the application of Ti-doped VO2 film due to its unique phase transition properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morin FJ (1959) Oxides which show a metal to insulator transition at the neel temperature. Phys Rev Lett 3:34–36

    Article  Google Scholar 

  2. Kim BJ, Lee YW, Chae BG, Yun SJ, Oh HY, Kim HT, Lim YS (2007) Temperature dependence of the first-order metal–insulator transition in VO2 and programmable critical temperature sensor. Appl Phys Lett 90:023514

    Article  Google Scholar 

  3. Kumar S, Pickett MD, Strachan JP, Gibson G, Nishi Y, Williams RS (2013) Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO2. Adv Mater 25:6128–6132

    Article  Google Scholar 

  4. Kübler C, Ehrke H, Huber R, Halabica A, Haglund RF, Leitenstorfer A (2007) Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2. Phys Rev Lett 99:116401

    Article  Google Scholar 

  5. Gavalleri A, Tóth C, Siders CW, Squire JA, Ráksi F, Forget P, Kieffer JC (2011) Femtosecond structural dynamics in VO2 during an ultrafast solid–solid phase transition. Phys Rev Lett 87:237401–237404

    Article  Google Scholar 

  6. Xu XF, He XF, Wang G, Yuan XL, Liu XX, Huang HY (2011) The study of optimal oxidation time and different temperatures for high quality VO2 thin film based on the sputtering oxidation coupling method. Appl Surf Sci 257:8824–8827

    Article  Google Scholar 

  7. Stefanovich G, Pergament A, Stefananovich D (2000) Electrical switching and Mott transition in VO2. J Phys Condens Matter 12:8837–8845

    Article  Google Scholar 

  8. Gea LA, Boatner LA (1996) Optical switching of coherent VO2 precipitates formed by ion implantation and annealing. Appl Phys Lett 68:3081–3083

    Article  Google Scholar 

  9. Granqvist CG, Lansáker PC, Mlyuka NR, Niklasson GA, Avendaňo E (2009) Progress in chromogenics: new results for electrochromic and thermochromic materials and devices. Energy Mater Sol Cells 93:2032–2039

    Article  Google Scholar 

  10. Granqvist CG, Green S, Niklasson GA, Mlyuka NR, Kramer SV, Georén P (2010) Advances in chromogenic materials and devices. Thin Solid Films 518:3046–3053

    Article  Google Scholar 

  11. Villeneuve G, Bordet A, Casalot A, Hagenmuller (1971) Properties physiques et structurales de la phase Cr x V1−x O2. Mater Res Bull 6:119–130

    Article  Google Scholar 

  12. Shu YL, Nuru RM, Daniel P, Anders H, Gorian P, Gunnar AN, Glaes GG (2013) Bandgap widening in thermochromic Mg-doped VO2 thin films: quantitative date based on optical absorption. Appl Phys Lett 103:161907

    Article  Google Scholar 

  13. Troy DM, Ivan PP (2004) Atmospheric pressure chemical vapour deposition of tungsten doped vanadium(IV) oxide from VOCl3, water and WCl6. J Mater Chem 2557:2554–2559

    Google Scholar 

  14. Khan KA, Niklasson GA, Granqvist CG (1988) Optical properties at the metalinsulator transition in thermochromic VO2−x F x thin films. J Appl Phys 64:3327

    Article  Google Scholar 

  15. Béteille F, Morineau R, Livage J, Nagano M (1997) Switching properties of V1−x Ti x O2 thin films deposited from alkoxides. Mater Res Bull 32:1109–1117

    Article  Google Scholar 

  16. Takahashi I, Hibino M, Kudo T (2001) Thermochromic properties of double-doped VO2 thin films prepared by a wet coating method using polyvanadate-based sols containing W and Mo or W and Ti. Jpn J Appl Phys 410:14–20

    Google Scholar 

  17. Rao CN, Natarajan M, Subba GV, Loehman RE (1971) Phase transition and conductivity anomalies in solid solutions of VO2 with TiO2, NbO2, and MoO2. J Phys Chem Solids 32:1147–1150

    Article  Google Scholar 

  18. Nishikawa M, Nakajima T, Kumaga T, Okutani T, Tsuchiya T (2011) Ti-doped VO2 films grown on glass substrates by excimer–laser-assisted metal organic deposition process. Jpn J Appl Phys 50:01–04

    Article  Google Scholar 

  19. Du J, Gao YF, Luo HJ, Kang LT, Zhang ZT, Chen Z, Cao CX (2012) Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition. Sol Energy Mater Sol Cells 95:469–475

    Article  Google Scholar 

  20. Chen S, Liu JJ, Wang LH, Luo HJ, Gao YF (2014) Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping : a joint experimental and theoretical study. J Phys Chem C 118:18938–18944

    Article  Google Scholar 

  21. Soltani M, Chaker M, Haddad E, Kruzelechy RV (2004) Margot J Effects of Ti-W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition. Appl Phys Lett 85:11–13

    Article  Google Scholar 

  22. Chen S, Dai L, Liu JJ, Gao YF, Liu XL, Chen Z, Zhao JD, Cao CX, Han PG, Luo HJ, Kanahira M (2013) The visible transmittance and solar modulation ability of VO2 flexible foils simultaneously improved by Ti doping: an optimization and first principle study. Phys Chem Chem Phys 15:17537–17543

    Article  Google Scholar 

  23. Partlow DP, Gurkovich SR, Radford KC, Denes LJ (1991) Switchable vanadium oxide films by a sol–gel process. J Appl Phys 50:443

    Article  Google Scholar 

  24. Zhang CX, Wei C, Adedeji AV, Hani EE (2014) Preparation and properties of VO2 thin films by a novel sol–gel process. J Sol Gel Sci Technol 69:320–324

    Article  Google Scholar 

  25. Xu YJ, Huang WX, Shi QW, Zhang Y, Song LW, Zhang YX (2012) Synthesis and properties of Mo and W ions co-doped porous nano-structured VO2 films by sol–gel process. J Sol Gel Sci Technol 64:493–499

    Article  Google Scholar 

  26. Shi Q, Huang W, Yan J, Zhang Y, Mao M, Zhang Y, Xu Y, Zhang Y (2011) Preparation and phase transition characterization of VO2 thin film on single crystal Si (100) substrate by sol–gel process. J Sol Gel Sci Technol 59:591–597

    Article  Google Scholar 

  27. Nag J, Hanlund RF (2008) Synthesis of vanadium dioxide thin films and nanoparticles. J Phys Condens Mat 20:264016

    Article  Google Scholar 

  28. Mazur M, Domaradzki J, Wojcieszak D, Kaczmark D, Mazur P (2014) Investigation of physicochemical properties of (Ti–V)O x (4.3 at.% of V) functional thin films and their possible application in the field of transparent electronics. Appl Surf Sci 304:73–80

    Article  Google Scholar 

  29. Liu ZF, Li JW, Ya J, Xin Y, Jin ZG (2008) Mechanism and characteristics of porous ZnO films by sol–gel method with PEG template. Matter Lett 62:1190–1193

    Article  Google Scholar 

  30. Chen SH, Ma H, Dai J, Yi XJ (2007) Nanostructured vanadium dioxide thin films with low phase transition temperature. Appl Phys Lett 90:101117

    Article  Google Scholar 

  31. Huang ZL, Chen SH, Lv CH, Huang Y, Lai JJ (2012) Infrared characteristics of VO2 thin films for smart window and laser protection applications. Appl Phys Lett 101:191905

    Article  Google Scholar 

  32. Aetukuri NB, Gray AX, Drouard M, Cossale M, Gao L, Reid AH, Kukrejia R, Ohldag H, Jenkins CA, Arenholz E, Roche KP, Dürr HA, Samant MG, Parkin SS (2013) Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy. Nat Phys 9:661–666

    Article  Google Scholar 

  33. Isamu K, Akinori W (1967) Shift of transition temperature of vanadium dioxide crystal. Appl Phys 6:1023–1024

    Google Scholar 

  34. Cao J, Ertekin E, Srinivasan V, Fan W, Huang S, Zheng H, Yim JW, Khanal DR, Ogletree DF, Grossman JC, Wu J (2009) Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams. Nat Nanotechnol 4:732–737

    Article  Google Scholar 

  35. Lysenko S, Vikhnin V, Rúa A, Fernández F, Liu H (2010) Critical behavior and size in light-induced transition of nanostructure VO2 films. Phys Rev B 82:205425

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grants 61271075, 11404226) and the Joint Research Fund from Sichuan University and China Academy of Engineering Physics. We thank the Analytical & Testing Center of Sichuan University for the XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiwu Shi or Wanxia Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Shi, Q., Huang, W. et al. Preparation and phase transition properties of Ti-doped VO2 films by sol–gel process. J Sol-Gel Sci Technol 78, 19–25 (2016). https://doi.org/10.1007/s10971-015-3913-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3913-z

Keywords

Navigation