Skip to main content
Log in

Synthesis, spectral characterization and crystal structure of a new precursor [(CH3COCHCOCH3)2Zr{C6H4(N=CHC6H4O)2}] for nano-zirconia: an investigation on the wettability of polyvinylidene fluoride–nano-zirconia composite material

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A new octa-coordinated metallo-organic complex of zirconium (IV) [(CH3COCHCOCH3)2Zr{C6H4(N=CHC6H4O)2}] was synthesized quantitatively by treating Zr(OPri)4·PriOH with CH3COCH2COCH3 and tetradentate Schiff’s base ligand (L) [where L = {C6H4(N=CHC6H4OH)2}] in 1:2:1 stoichiometry in anhydrous refluxing toluene. The yellow solid complex was characterized by elemental analysis, FTIR, UV–visible, fluorescence and NMR (1H and 13C) spectra as well as by single-crystal XRD. The complex was processed to obtain nano-structured zirconia (ZrO2) by sol–gel technique, and oxide ceramic was subjected to powder XRD, TEM and EDX analyses. Further, the same zirconia was employed in preparing superhydrophobic PVDF–nano-ZrO2 composite coatings by spray coating method, and the effect of nano-oxide ceramic on the wettability of PVDF–nano-ZrO2 composite coatings was studied systematically. The composite material was also characterized by FTIR and powder XRD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang Q, Zhang MZ, Sun LN, Hu CW, Cao CB (2012) Appl Mech Mater 235:217–219

    Article  Google Scholar 

  2. Chakravarty R, Shukla R, Ram R, Tyagi AK, Dash A, Venkatesh M (2010) Chromatographia 72:875–884

    Article  Google Scholar 

  3. Rebuttini V, Pucci A, Arosio P, Bai X, Locatelli E, Pinna N, Lascialfari A, Franchini MC (2013) J Mater Chem B 1:919–923

    Article  Google Scholar 

  4. Li W, Huang H, Li H, Zhuang W, Liu H (2008) Langmuir 24:358–366

    Google Scholar 

  5. Krogman KC, Druffel T, Sunkara MK (2005) Nanotechnology 16:338

    Article  Google Scholar 

  6. Luo K, Zhou S, Wu L (2009) Thin Solid Films 517:5974–5980

    Article  Google Scholar 

  7. Tominaka S, Akiyama N, Croce F, Momma T, Scrosati B, Osaka T (2008) J Power Sources 185:656–663

    Article  Google Scholar 

  8. Chaudhary A, Gopal R, Nagar M, Bohra R (2014) J Sol Gel Sci Technol 69:102–106

    Article  Google Scholar 

  9. Lichtenberger R, Puchberger M, Baumann SO, Schubert U (2009) J Sol Gel Sci Technol 50:130–140

    Article  Google Scholar 

  10. Yadav N, Nagar M, Bohra R (2010) J Sol Gel Sci Technol 54:119–128

    Article  Google Scholar 

  11. Samuel B, Kiran T, Prasanth VG, Pathak M (2014) Med Chem Res 23:699–707

    Article  Google Scholar 

  12. Shukla S, Seal S, Vanfleet R (2003) J Sol Gel Sci Technol 29:119–136

    Article  Google Scholar 

  13. Tyagi B, Sidhpuria K, Shaik B, Jasra RV (2006) Ind Eng Chem Res 45:8643–8650

    Article  Google Scholar 

  14. Akarau M, Sayilkan H, Sener S, Sayilkan F, Arpac E (2003) Turk J Chem 27:477–486

    Google Scholar 

  15. Wang JA, Valenzuela MA, Salmones J, Vazquez A, Garcia-Ruiz A, Bokhimi X (2001) Catal Today 68:21–30

    Article  Google Scholar 

  16. Heshmatpour F, Hyhakhanpour RB (2012) Adv Powder Technol 23:80–87

    Article  Google Scholar 

  17. Sharma N, Sharma V, Bohra R, Nagar M, Kausik A, Mathur S, Barth S (2008) J Coord Chem 61:2234–2245

    Article  Google Scholar 

  18. Ottman GK, Hofmann HF, Bhatt AC, Lesieutre GA (2002) IEEE Trans Power Electron 17:669–676

    Article  Google Scholar 

  19. Chiang CY, Shen YJ, Reddy MJ, Chu PP (2003) J Power Sources 123:222–229

    Article  Google Scholar 

  20. Shirinov AV, Schomburg WK (2008) Sens Actuators A 142:48–55

    Article  Google Scholar 

  21. Mohamed NS, Arof AK (2004) J Power Sources 132:229–234

    Article  Google Scholar 

  22. Raghavan P, Zhao X, Kim JK, Manuel J, Chauhan GS, Ahn JH, Nah CW (2008) Electrochim Acta 54:228–234

    Article  Google Scholar 

  23. Jung HR, Ju DH, Lee WJ, Zhang X, Kotek R (2009) Electrochim Acta 54:3630–3637

    Article  Google Scholar 

  24. Raghavan P, Choi JW, Ahn JH, Cheruvally G, Chauhan GS, Ahn HJ, Nah CW (2008) J Power Sources 184:437–443

    Article  Google Scholar 

  25. Otsuka T, Chujo Y (2009) Polymer 50:3174–3181

    Article  Google Scholar 

  26. Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T (2010) ACS Nano 4:7699–7707

    Article  Google Scholar 

  27. Zhang FZ, Zhao LL, Chen HY, Xu SL, Evans DG, Duan X (2008) Angew Chem Int Ed 47:2466–2469

    Article  Google Scholar 

  28. Cho H, Kim D, Lee C, Hwang W (2013) Curr Appl Phys 13:762–767

    Article  Google Scholar 

  29. Chakradhar RPS, Prasad G, Bera P, Anandan C (2014) Appl Surf Sci 301:208–215

    Article  Google Scholar 

  30. Sanwaria AR, Sharma N, Choudhary A, Nagar M (2013) J Sol Gel Sci Technol 68:245–253

    Article  Google Scholar 

  31. Pathak M (2004) Ph.D. Thesis, University of Rajasthan, Jaipur

  32. Tayade K, Sahoo SK, Patil R, Singh N, Attarde S, Kuwar A (2014) Spectrochim Acta A 126:312–316

    Article  Google Scholar 

  33. Poonia K, Maanju S, Chaudhary P, Singh RV (2007) Transition Met Chem 32:204–208

    Article  Google Scholar 

  34. Pathak M, Bohra R, Mehrothra RC (2003) Transition Met Chem 28:187–192

    Article  Google Scholar 

  35. Sheldrick GM (2008) Acta Cryst 64:112–122

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their cordial thanks to VIT University, Vellore, India, for providing essential infrastructure and facilities to accomplish the present research work. One of the authors (V. G. Prasanth) is grateful to VIT administration for the award of Research Associateship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Madhvesh Pathak or Kulathu Iyer Sathiyanarayanan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 742 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasanth, V.G., Prasad, G., Kiran, T. et al. Synthesis, spectral characterization and crystal structure of a new precursor [(CH3COCHCOCH3)2Zr{C6H4(N=CHC6H4O)2}] for nano-zirconia: an investigation on the wettability of polyvinylidene fluoride–nano-zirconia composite material. J Sol-Gel Sci Technol 76, 195–203 (2015). https://doi.org/10.1007/s10971-015-3766-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3766-5

Keywords

Navigation