Skip to main content
Log in

Comparison of structure and phase change characteristic of microencapsulated core/shell Al–Si alloy microparticles synthesized by two methods

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Pre-oxidation process and modification with silane coupling agent (SCA) of original Al–Si alloy particles were selected to synthesize inorganic microencapsulated core/shell Al–Si alloy microparticles based on the sol–gel technology, respectively. The microstructure and phase change characteristic were measured and investigated by means of Fourier transform infrared spectra, X-ray diffraction, scanning electron microscopy, thermogravimetry and differential scanning calorimeter. These two methods can both realize the microencapsulation and form stable dense α-Al2O3 shell. It is speculated that the microencapsulated reason is mainly attributed to the change in surface electric behaviors of Al–Si alloy particles according to the results of zeta potential measure. The latent heats are 416.92 and 307.21 kJ/kg for specimens treated by pre-oxidation and the modification of SCA, respectively. The latter renders thicker and more uniform shell layer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kenisarin MM (2010) High-temperature phase change materials for thermal energy storage. Renew Sustain Energy Rev 14:955–970

    Article  Google Scholar 

  2. Liang ZX, Yea B, Zhang L, Wang QG, Yang WY, Wang QD (2013) A new high-strength and corrosion-resistant Al–Si based casting alloy. Mater Lett 97:104–107

    Article  Google Scholar 

  3. Sun JQ, Zhang RY, Liu Z, Lu GH (2007) Thermal reliability test of Al–34%Mg–6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling. Energy Convers Manag 48:619–624

    Article  Google Scholar 

  4. Khare S, Dell’Amico M, Knight C, McGarry S (2012) Selection of materials for high temperature latent heat energy storage. Sol Energy Mater Sol Cells 107:20–27

    Article  Google Scholar 

  5. Yagi J, Akiyama T (1995) Storage of thermal energy for effective use of waste heat from industries. J Mater Process Technol 48:793–804

    Article  Google Scholar 

  6. Liu M, Saman W, Bruno F (2012) Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energy Rev 16:2118–2132

    Article  Google Scholar 

  7. Farkas D, Birchenall CE (1985) New eutectic alloys and their heats of transformation. Metall Trans A 16A:324–328

    Google Scholar 

  8. Birchenall CE, Riechman AF (1980) Heat storage in eutectic alloys. Metall Trans A 11A:1415–1420

    Article  Google Scholar 

  9. Cambronero LEG, Cañadas I, Martínez D, Ruiz-Román JM (2010) Foaming of aluminium–silicon alloy using concentrated solar energy. Sol Energy 84:879–887

    Article  Google Scholar 

  10. Cheng X, Chen X, Li Y, Tan Y (2011) Research on the properties of the thermal storage and corrosion of Al–Si–Cu–Mg–Zn alloy. Adv Mater Res 197–198:1064–1072

    Article  Google Scholar 

  11. Wang X, Liu J, Zhang Y, Di H, Jiang Y (2006) Experimental research on a kind of novel high temperature phase change storage heater. Energy Convers Manag 47:2211–2222

    Article  Google Scholar 

  12. Chen X, Zhang R (2012) Corrosion behavior of low pressure plasma sprayed MoB/CoCr coatings exposed to molten Al–12.07 wt% Si alloy. Procedia Eng 27:1766–1773

    Article  Google Scholar 

  13. Xue W, Shi X, Hua M, Li Y (2007) Preparation of anti-corrosion films by microarc oxidation on an Al–Si alloy. Appl Surf Sci 253:6118–6124

    Article  Google Scholar 

  14. Li X, Nie X, Wang L, Northwood DO (2005) Corrosion protection properties of anodic oxide coatings on an Al–Si alloy. Surf Coat Technol 200:1994–2000

    Article  Google Scholar 

  15. Rapp RA, Mobley CE (1984) Hypereutectic direct-contact thermal storage material and method of production thereof. United States Patent No. 4657067

  16. Lin WT, Huang DS, Lin MT, Lai CM (2011) The thermal evaluation of the substrate mixed with microencapsulated phase change materials for MEMS packaging applications. Microsyst Technol 17:693–699

    Article  Google Scholar 

  17. Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T (2011) Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev 15:1373–1391

    Article  Google Scholar 

  18. Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán LM (2010) Recent progress on silica coating of nanoparticles and recent nanomaterials. Adv Mater 22:1185–1195

    Google Scholar 

  19. Dai Z, Meiser F, Möhwald H (2005) Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol–gel process. J Colloid Interface Sci 288:298–300

    Article  Google Scholar 

  20. Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR (2003) Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J Am Chem Soc 125:475–482

    Article  Google Scholar 

  21. Kim JM, Chang SM, Kim S, Kim K, Kim J, Kim W (2009) Design of SiO2/ZrO2 core–shell particles using the sol–gel process. Ceram Int 35:1243–1247

    Article  Google Scholar 

  22. Salminen H, Weiss J (2014) Electrostatic adsorption and stability of whey proteinepectin complexes on emulsion interfaces. Food Hydrocoll 35:410–419

    Article  Google Scholar 

  23. McNeil-Watson F, Tscharnuter W, Miller J (1998) A new instrument for the measurement of very small electrophoretic mobilities using phase analysis light scattering (PALS). Coll Surf A 140:53–57

    Article  Google Scholar 

  24. Cho D, Lee S, Frey MW (2012) Characterizing zeta potential of functional nanofibers in a microfluidic device. J Coll Interface Sci 372:252–260

    Article  Google Scholar 

  25. Afonso MD (2006) Surface charge on loose nanofiltration membranes. Desalination 191:262–272

    Article  Google Scholar 

  26. Storaska GA, Howe JM (2004) In-situ transmission electron microscopy investigation of surface-oxide, stress-relief mechanisms during melting of sub-micrometer Al–Si alloy particles. Mater Sci Eng A 368:183–190

    Article  Google Scholar 

  27. Azour H, Derouault J, Lauroua P, Vezon G (2000) Fourier transform infrared spectroscopic characterization of grafting of 3-aminopropyl silanol onto aluminum/alumina substrate. Spectrochim Acta A 56:1627–1635

    Article  Google Scholar 

  28. Boumaza A, Djelloul A, Guerrab F (2010) Specific signatures of α-alumina powders prepared by calcination of boehmite or gibbsite. Powder Technol 201:177–180

    Article  Google Scholar 

  29. Singh BP, Menchavez R, Takai C, Fuji M, Takahashi M (2005) Stability of dispersions of colloidal alumina particles in aqueous suspensions. J Colloid Interface Sci 29:1181–1186

    Google Scholar 

  30. Hareesh UNS, Sternitzke M, Janssen R, Claussen N (2004) Processing and properties of sol–gel-derived alumina/silicon carbide nanocomposites. J Am Ceram Soc 87:1024–1030

    Article  Google Scholar 

  31. Cerbelaud M, Videcoq A, Abélard P, Pagnoux C, Rossignol F, Ferrando R (2008) Heteroaggregation between Al2O3 submicrometer particles and SiO2 nanoparticles: experiment and simulation. Langmuir 24:3001–3008

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (No. 11172082) and Key Laboratory Opening Funding of Key Laboratory of Science and Technology on Advanced Composites in Special Environments (No. 9140C490208140C49003) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingwei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Sui, C., He, X. et al. Comparison of structure and phase change characteristic of microencapsulated core/shell Al–Si alloy microparticles synthesized by two methods. J Sol-Gel Sci Technol 76, 1–10 (2015). https://doi.org/10.1007/s10971-015-3743-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3743-z

Keywords

Navigation