Skip to main content
Log in

Stacked ZnO nanorods synthesized by solution precipitation method and their photocatalytic activity study

  • Report
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

ZnO has been considered as a promising photocatalyst for wastewater treatment. Although many works have been done to enhance the photocatalytic activity of ZnO particles, it is difficult to synthesize well-controlled morphology of ZnO particles having high photocatalytic activity. In this work, stacked ZnO nanorods were synthesized at different growth time via solution precipitation method. Their length and diameter of stacked ZnO nanorods increased with growth time. The formation of stacked ZnO nanorods was attributed to the joining of (002) polar surfaces at the tips of a smaller ZnO nanorods during the synthesis process. A small amount of PVP was added to minimize the agglomeration and to reduce the secondary nucleation of ZnO nanorods. The photocatalytic study showed that the photodegradation of RhB solution by stacked ZnO nanorods under UV light followed first-order kinetic. The results also indicated that a larger effective surface area of stacked ZnO nanorods leads to a higher adsorption of organic molecules, causing a better photocatalytic activity for RhB dye removal.

Graphical Abstract

Stacked ZnO nanorods synthesized by solution precipitation method and their photocatalytic activity study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Fujishima A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  2. Fujishima A, Honda K, Kikuchi S (1969) Photosensitized electrolytic oxidation on semiconducting n-type TiO2 electrode. J Chem Soc Jpn (Kogyo Kagaku Zasshi) 72:108–113

    Google Scholar 

  3. Kawai T, Sakata T (1979) Hydrogen evolution from water using solid carbon and light energy. Nature 282:283–284

    Article  Google Scholar 

  4. Kawai T, Sakata T (1980) Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature 286:474–476

    Article  Google Scholar 

  5. Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72:83–86

    Article  Google Scholar 

  6. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  Google Scholar 

  7. Cai X, Cai Y, Liu Y, Deng S, Wang Y, Wang Y, Djerdj I (2014) Photocatalytic degradation properties of Ni (OH)2 nanosheets/ZnO nanorods composites for azo dyes under visible-light irradiation. Ceram Int 40:57–65

    Article  Google Scholar 

  8. Kuriakose S, Bhardwaj N, Singh J, Satpati B, Mohapatra S (2013) Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method. Beilstein J Nanotechnol 4:763–770

    Article  Google Scholar 

  9. Aarthi T, Madras G (2007) Photocatalytic degradation of rhodamine dyes with nano-TiO2. Ind Eng Chem Res 46:7–14

    Article  Google Scholar 

  10. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  11. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21

    Article  Google Scholar 

  12. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  13. Arnold MS, Avouris P, Pan ZW, Wang ZL (2003) Field-effect transistors based on single semiconducting oxide nanobelts. J Phys Chem B 107:659–663

    Article  Google Scholar 

  14. Ryu Y, Lee T-S, Lubguban JA, White HW, Kim B-J, Park Y-S, Youn C-J (2006) Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Appl Phys Lett 88:241108–241108-3

    Article  Google Scholar 

  15. Bhatkhande DS, Pangarkar VG, Beenackers AA (2002) Photocatalytic degradation for environmental applications—a review. J Chem Technol Biotechnol 77:102–116

    Article  Google Scholar 

  16. Lim JH, Kang CK, Kim KK, Park IK, Hwang DK, Park SJ (2006) UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Adv Mater 18:2720–2724

    Article  Google Scholar 

  17. Lansdown A, Taylor A (1997) Zinc and titanium oxides: Promising UV-absorbers but what influence do they have on the intact skin? Int J Cosmet Sci 19:167–172

    Article  Google Scholar 

  18. Mohammad MT, Hashim AA, Al-Maamory MH (2006) Highly conductive and transparent ZnO thin films prepared by spray pyrolysis technique. Mater Chem Phys 99:382–387

    Article  Google Scholar 

  19. Zhang Y, Yang Y, Zhao J, Tan R, Cui P, Song W (2009) Preparation of ZnO nanoparticles by a surfactant-assisted complex sol–gel method using zinc nitrate. J Sol–Gel Sci Technol 51:198–203

    Article  Google Scholar 

  20. Krishnan D, Pradeep T (2009) Precursor-controlled synthesis of hierarchical ZnO nanostructures, using oligoaniline-coated Au nanoparticle seeds. J Cryst Growth 311:3889–3897

    Article  Google Scholar 

  21. Pung S-Y, Lee W-P, Aziz A (2012) Kinetic study of organic dye degradation using ZnO particles with different morphologies as a photocatalyst. International Journal of Inorganic Chemistry 2012:1–9

    Article  Google Scholar 

  22. Wang M, Hahn SH, Kim JS, Chung JS, Kim EJ, Koo K-K (2008) Solvent-controlled crystallization of zinc oxide nano (micro) disks. J Cryst Growth 310:1213–1219

    Article  Google Scholar 

  23. Zhang L, Yang H, Ma J, Li L, Wang X, Zhang L, Tian S, Wang X (2010) Controllable synthesis and shape-dependent photocatalytic activity of ZnO nanorods with a cone and different aspect ratios and of short-and-fat ZnO microrods by varying the reaction temperature and time. Appl Phys A 100:1061–1067

    Article  Google Scholar 

  24. Gao P, Ying C, Wang S, Ye L, Guo Q, Xie Y (2006) Low temperature hydrothermal synthesis of ZnO nanodisk arrays utilizing self-assembly of surfactant molecules at solid–liquid interfaces. J Nanopart Res 8:131–136

    Article  Google Scholar 

  25. Tonto P, Mekasuwandumrong O, Phatanasri S, Pavarajarn V, Praserthdam P (2008) Preparation of ZnO nanorod by solvothermal reaction of zinc acetate in various alcohols. Ceram Int 34:57–62

    Article  Google Scholar 

  26. Abd Aziz SNQA, Pung S-Y, Lockman Z (2014) Growth of Fe-doped ZnO nanorods using aerosol-assisted chemical vapour deposition via in situ doping. Appl Phys A 116:1801–1811

    Article  Google Scholar 

  27. Cho S, Jung S-H, Lee K-H (2008) Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures. J Phys Chem C 112:12769–12776

    Article  Google Scholar 

  28. Zak AK, Abrishami ME, Majid WHA, Yousefi R, Hosseini SM (2011) Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceram Int 37:393–398

    Article  Google Scholar 

  29. Vernardou D, Kenanakis G, Couris S, Koudoumas E, Kymakis E, Katsarakis N (2007) pH effect on the morphology of ZnO nanostructures grown with aqueous chemical growth. Thin Solid Films 515:8764–8767

    Article  Google Scholar 

  30. Rodríguez-Paéz JE, Caballero AC, Villegas M, Moure C, Durán P, Fernández JF (2001) Controlled precipitation methods: formation mechanism of ZnO nanoparticles. J Eur Ceram Soc 21:925–930

    Article  Google Scholar 

  31. Zhang H, Yang D, Ma X, Du N, Wu J, Que D (2006) Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence. J Phys Chem B 110:827–830

    Article  Google Scholar 

  32. Gao X, Li X, Yu W (2005) Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex. J Phys Chem B 109:1155–1161

    Article  Google Scholar 

  33. Jiang H, Hu J, Gu F, Li C (2009) Self-assembly of solid or tubular ZnO rods into twinning microprisms via a hydrothermal route. J Alloy Compd 478:550–553

    Article  Google Scholar 

  34. Xia J, X-h Lu, C-s Wang, Y-x Tong, L-p Chen (2011) Electrochemical assemble of single crystalline twin ZnO nanorods. J Electrochem Soc 158:D244–D247

    Article  Google Scholar 

  35. Thirugnanam T (2013) Effect of polymers (PEG and PVP) on sol-gel synthesis of microsized zinc oxide. J Nanomater 2013:1–7

    Article  Google Scholar 

  36. Kumar V, Kr Sharma S, Sharma T, Singh V (1999) Band gap determination in thick films from reflectance measurements. Opt Mater 12:115–119

    Article  Google Scholar 

  37. Lee JR, Meulenberg RW, Hanif KM, Mattoussi H, Klepeis JE, Terminello LJ, van Buuren T (2007) Experimental observation of quantum confinement in the conduction band of CdSe quantum dots. Phys Rev Lett 98:146803–146804

    Article  Google Scholar 

  38. Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R (2014) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Scientific reports 4:1–8

    Google Scholar 

  39. Dhara S, Giri P (2011) Quick single-step mechanosynthesis of ZnO nanorods and their optical characterization: milling time dependence. Appl Nanosci 1:165–171

    Article  Google Scholar 

  40. Ba-Abbad MM, Kadhum AAH, Bakar Mohamad A, Takriff MS, Sopian K (2013) The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol–gel technique. J Alloy Compd 550:63–70

    Article  Google Scholar 

  41. Cong Y, Zhang J, Chen F, Anpo M (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111:6976–6982

    Article  Google Scholar 

  42. Djurišić A, Choy WC, Roy VAL, Leung YH, Kwong CY, Cheah KW, Gundu Rao T, Chan WK, Fei Lui H, Surya C (2004) Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures. Adv Funct Mater 14:856–864

    Article  Google Scholar 

  43. Hassan N, Hashim M, Mahdi M, Allam NK (2012) A catalyst-free growth of ZnO nanowires on Si (100) substrates: effect of substrate position on morphological, structural and optical properties. ECS J Solid State Sci Technol 1:P86–P89

    Article  Google Scholar 

  44. Wei A, Sun XW, Xu C, Dong ZL, Yang Y, Tan ST, Huang W (2006) Growth mechanism of tubular ZnO formed in aqueous solution. Nanotechnology 17:1740–1744

    Article  Google Scholar 

  45. Thein MT, Pung S-Y, Aziz A, Itoh M (2014) The role of ammonia hydroxide in the formation of ZnO hexagonal nanodisks using sol–gel technique and their photocatalytic study. J Exp Nanosci. doi:10.1080/17458080.2014.953609

  46. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    Article  Google Scholar 

  47. Jang ES, Won JH, Hwang SJ, Choy JH (2006) Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv Mater 18:3309–3312

    Article  Google Scholar 

  48. Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ, Rodriguez MA, Konishi H, Xu H (2003) Complex and oriented ZnO nanostructures. Nat Mater 2:821–826

    Article  Google Scholar 

  49. Wang L, Chang L, Zhao B, Yuan Z, Shao G, Zheng W (2008) Systematic investigation on morphologies, forming mechanism, photocatalytic and photoluminescent properties of ZnO nanostructures constructed in ionic liquids. Inorg Chem 47:1443–1452

    Article  Google Scholar 

  50. Mclaren A, Valdes-Solis T, Li G, Tsang SC (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131:12540–12541

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank AUN/SEED-Net under Collaborative Research Program (CR) (304/PBAHAN/6050277/A119) and USM Research University Grant (RU) (1001/PBAHAN/814200) for providing the research funding to conduct this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swee-Yong Pung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thein, M.T., Pung, SY., Aziz, A. et al. Stacked ZnO nanorods synthesized by solution precipitation method and their photocatalytic activity study. J Sol-Gel Sci Technol 74, 260–271 (2015). https://doi.org/10.1007/s10971-015-3646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3646-z

Keywords

Navigation