Skip to main content
Log in

Effects of calcination temperature on preparation and properties of europium-doped bismuth oxide as visible light catalyst

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Eu-doped bismuth oxide (Bi2O3) (optimal Eu doping ratio 1:4) was prepared via sol–gel method, and then used to carry out the precursors for 5 h calcinations at 300, 400, 500, and 600 °C separately. The as-synthesized materials were characterized using X-ray diffraction, scanning electron microscope, Brunauer–Emmett–Teller analysis, X-ray photoelectron spectroscopy, diffuse reflectance ultraviolet–visible spectroscopy and surface photovoltage spectroscopy. The results showed that the calcination temperature observably affected the photocatalytic activity, and specifically, temperature rise was favorable for crystallization of the photocatalyst. The smallest forbidden bandwidth was found in catalyst-400 (about 2.75 eV). The strongest photovoltage signal was within 550 nm. It meant the optimal calcination temperature was 400 °C. The phenol degradation efficiency of Eu-doped Bi2O3 samples were tested under visible light strength 1.8 × 105 Lux(xenon lamp), the results showed that in catalyst-400, the maximum degradation efficiency was 91.07 % with the highest photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chandraboss VL, Natanapatham L, Karthikeyan B, Kamalakkannan J, Prabha S, Senthilvelan S (2013) Effect of bismuth doping on the ZnO nanocomposite material and study of its photocatalytic activity under UV-light. Mater Res Bull 48(10):3707–3712. doi:10.1016/j.materresbull.2013.05.121

    Article  Google Scholar 

  2. Xu J, Wang W, Shang M, Gao E, Zhang Z, Ren J (2011) Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation. J Hazard Mater 196:426–430. doi:10.1016/j.jhazmat.2011.09.010

    Article  Google Scholar 

  3. Yang X-H, Zhang P-H, Zhou Y-H, Liu C-G (2011) Synthesis and antioxidant evaluation of novel 4-aryl-hexahydroquinolines from lignin. ARKIVOC 10:327–337

  4. Adhikari R, Gyawali G, Cho SH, Narro-García R, Sekino T, Lee SW (2014) Er3+/Yb3+ co-doped bismuth molybdate nanosheets upconversion photocatalyst with enhanced photocatalytic activity. J Solid State Chem 209:74–81. doi:10.1016/j.jssc.2013.10.028

    Article  Google Scholar 

  5. Chai Y, Lin L, Zhang K, Zhao B, He D (2014) Efficient visible-light photocatalysts from Gd–La codoped TiO2 nanotubes. Ceram Int 40(2):2691–2696. doi:10.1016/j.ceramint.2013.10.054

    Article  Google Scholar 

  6. Yang H, Guo L, Yan W, Liu H (2006) A novel composite photocatalyst for water splitting hydrogen production. J Power Sources 159(2):1305–1309. doi:10.1016/j.jpowsour.2005.11.106

    Article  Google Scholar 

  7. Wang L, Zhang J, Li C, Zhu H, Wang W, Wang T (2011) Synthesis, characterization and photocatalytic activity of TiO2 Film/Bi2O3 microgrid heterojunction. J Mater Sci Technol 27(1):59–63. doi:10.1016/S1005-0302(11)60026-1

    Article  Google Scholar 

  8. Alemi AA, Kashfi R, Shabani B (2014) Preparation and characterization of novel Ln (Gd3+, Ho3+ and Yb3+)-doped Bi2MoO6 with Aurivillius layered structures and photocatalytic activities under visible light irradiation. J Mol Catal A: Chem 392:290–298. doi:10.1016/j.molcata.2014.05.029

    Article  Google Scholar 

  9. An H, Du Y, Wang T, Wang C, Hao W, Zhang J (2008) Photocatalytic properties of BiOX (X = Cl, Br, and I). Rare Met 27(3):243–250. doi:10.1016/S1001-0521(08)60123-0

    Article  Google Scholar 

  10. Kohtani S, Koshiko M, Kudo A, Tokumura K, Ishigaki Y, Toriba A, Hayakawa K, Nakagaki R (2003) Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Appl Catal B 46(3):573–586. doi:10.1016/s0926-3373(03)00320-5

    Article  Google Scholar 

  11. Hu X, Hu C (2007) Preparation and visible-light photocatalytic activity of Ag3VO4 powders. J Solid State Chem 180(2):725–732. doi:10.1016/j.jssc.2006.11.032

    Article  Google Scholar 

  12. Li H, Li K, Wang H (2009) Hydrothermal synthesis and photocatalytic properties of bismuth molybdate materials. Mater Chem Phys 116(1):134–142. doi:10.1016/j.matchemphys.2009.02.058

    Article  Google Scholar 

  13. Zhao X, Xu T, Yao W, Zhu Y (2009) Photodegradation of dye pollutants catalyzed by γ-Bi2MoO6 nanoplate under visible light irradiation. Appl Surf Sci 255(18):8036–8040. doi:10.1016/j.apsusc.2009.05.010

    Article  Google Scholar 

  14. Zhang L-W, Wang Y-J, Cheng H-Y, Yao W-Q, Zhu Y-F (2009) Synthesis of porous Bi2WO6 thin films as efficient visible-light-active photocatalysts. Adv Mater 21(12):1286–1290. doi:10.1002/adma.200801354

    Article  Google Scholar 

  15. Baek S-S, Lee N, Kim B-K, Chang H, Song S-J, Park J-Y (2012) Addition effects of erbia-stabilized bismuth oxide on ceria-based carbonate composite electrolytes for intermediate temperature- − solid oxide fuel cells. Int J Hydrogen Energy 37(22):16823–16834. doi:10.1016/j.ijhydene.2012.09.015

    Article  Google Scholar 

  16. Arasteh S, Maghsoudipour A, Alizadeh M, Nemati A (2011) Effect of Y2O3 and Er2O3 co-dopants on phase stabilization of bismuth oxide. Ceram Int 37(8):3451–3455. doi:10.1016/j.ceramint.2011.04.136

    Article  Google Scholar 

  17. Hameed A, Gombac V, Montini T, Graziani M, Fornasiero P (2009) Synthesis, characterization and photocatalytic activity of NiO–Bi2O3 nanocomposites. Chem Phys Lett 472(4–6):212–216. doi:10.1016/j.cplett.2009.03.017

    Article  Google Scholar 

  18. Li J, Zhong J, He X, Huang S, Zeng J, He J, Shi W (2013) Enhanced photocatalytic activity of Fe2O3 decorated Bi2O3. Appl Surf Sci 284:527–532. doi:10.1016/j.apsusc.2013.07.128

    Article  Google Scholar 

  19. Zeng J, Li J, Zhong J, Huang S, Shi W, He J (2013) Synthesis, characterization and solar photocatalytic performance of In2O3-decorated Bi2O3. Mater Sci Semicond Process 16(6):1808–1812. doi:10.1016/j.mssp.2013.06.020

    Article  Google Scholar 

  20. Yang X, Lian X, Liu S, Jiang C, Tian J, Wang G, Chen J, Wang R (2013) Visible light photoelectrochemical properties of β-Bi2O3 nanoporous films: a study of the dependence on thermal treatment and film thickness. Appl Surf Sci 282:538–543. doi:10.1016/j.apsusc.2013.06.007

    Article  Google Scholar 

  21. Liang J, Zhu G, Liu P, Luo X, Tan C, Jin L, Zhou J (2014) Synthesis and characterization of Fe-doped β-Bi2O3 porous microspheres with enhanced visible light photocatalytic activity. Superlattices Microstruct 72:272–282. doi:10.1016/j.spmi.2014.05.005

    Article  Google Scholar 

  22. Zhu G, Que W, Zhang J (2011) Synthesis and photocatalytic performance of Ag-loaded β-Bi2O3 microspheres under visible light irradiation. J Alloy Compd 509(39):9479–9486. doi:10.1016/j.jallcom.2011.07.046

    Article  Google Scholar 

  23. Sun Y, Wang W, Zhang L, Zhang Z (2012) Design and controllable synthesis of α-/γ-Bi2O3 homojunction with synergetic effect on photocatalytic activity. Chem Eng J 211–212:161–167. doi:10.1016/j.cej.2012.09.084

    Article  Google Scholar 

  24. Malathy P, Vignesh K, Rajarajan M, Suganthi A (2014) Enhanced photocatalytic performance of transition metal doped Bi2O3 nanoparticles under visible light irradiation. Ceram Int 40(1):101–107. doi:10.1016/j.ceramint.2013.05.109

    Article  Google Scholar 

  25. Li L, Yan B (2009) CeO2–Bi2O3 nanocomposite: two step synthesis, microstructure and photocatalytic activity. J Non-Cryst Solids 355(13):776–779. doi:10.1016/j.jnoncrysol.2009.04.003

    Article  Google Scholar 

  26. Huang JG, Zhao XG, Zheng MY, Li S, Wang Y, Liu XJ (2013) Preparation of N-doped TiO2 by oxidizing TiN and its application on phenol degradation. Water Sci Technol 68(4):934–939. doi:10.2166/wst.2013.309

    Article  Google Scholar 

  27. Lacoste RJ, Venable SH, Stone JC (1959) Modified 4-aminoantipyrine colorimetric method for phenols. Analyt Chem 31:1246–1249

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University for allowing us the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengjun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, S., Zou, S., Peng, X. et al. Effects of calcination temperature on preparation and properties of europium-doped bismuth oxide as visible light catalyst. J Sol-Gel Sci Technol 74, 220–226 (2015). https://doi.org/10.1007/s10971-014-3602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3602-3

Keywords

Navigation