Skip to main content
Log in

Structural, magnetic and dielectric properties of spinel MgFe2O4 by sol–gel route

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Importance of spinel ferrites arises due to their technological and industrial applications in electronic and spintronic devices. Among magnetic ferrites with formula XFe2O4 (where X = Co, Ni, etc.), magnesium ferrite, with unique magnetic properties along with n-type conductivity, has significant advantage over other spinel ferrites. In this work MgFe2O4 sols and thin films are prepared using sol–gel and spin coating method. Mg/Fe ratio is varied as 0.4, 0.45, 0.5, 0.55, 0.6. Magnetic properties of sols indicate presence of single magnetic phase with Mg/Fe ratio of 0.55. Variation in Mg/Fe ratio during sol synthesis not only affects the magnetic properties but also affects phase purity of magnesium iron oxide thin films. Presence of diffraction peaks corresponding to (220), (222), (400), (331) and (620) planes confirm the formation of MgFe2O4 at low annealing temperature of 300 °C with Mg/Fe ratio of 0.55. This is the lowest temperature that has ever been reported for the formation of phase pure MgFe2O4 thin films. Phase purity at Mg/Fe ratio of 0.55 also results in high dielectric constant and low dielectric loss. Arrhenius plot for conductivity shows semiconducting behavior due to electron hopping between Fe2+ and Fe3+ cations. Moreover, strong magnetic behavior with high saturation magnetization of 163 emu/cm3 is obtained with Mg/Fe ratio of 0.55. Saturation magnetization decrease with Mg/Fe 0.4, 0.45, 0.5 and 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pui A, Gherc D, Cornei N (2013) Mater Res Bull 48:1357–1362

    Article  Google Scholar 

  2. Arabi H, Moghadam NK (2013) J Magn Magn Mater 335:144–148

    Article  Google Scholar 

  3. Kim KS, Muralidharan P, Han SH, Kim JS, Kim HG, Cheon CI (2010) J Alloy Compd 503:460–463

    Article  Google Scholar 

  4. Khot VM, Salunkhe AB, Phadatare MR, Pawar SH (2012) Mater Chem Phys 132:782–787

    Article  Google Scholar 

  5. Sivakumar N, Narayanasamy A, Greneche JM, Murugaraj R, Lee YS (2010) J Alloy Compd 504:395–402

    Article  Google Scholar 

  6. Pan Y, Zhang Y, Wei X, Yuan C, Yin J, Cao D, Wang G (2013) Electrochim Acta 109:89–94

    Article  Google Scholar 

  7. Xiang X, Fan G, Fan J, Li F (2010) J Alloy Compd 499:30–34

    Article  Google Scholar 

  8. Craik DJ (1975) Magnetic oxide. Wiley, Great Britain

    Google Scholar 

  9. Kim KS, Han SH, Kim HG, Lee YT, Kim KA, Kim JS, Cheon CI (2009) J Korean Phys Soc 54:886–890

    Article  Google Scholar 

  10. Gupta RK, Yakuphanoglu F (2011) Mater Lett 65:3058–3060

    Article  Google Scholar 

  11. Kotnala RK, Shah J, Mathpal MC, Verma KC, Singh S (2011) Lovkush. Thin Solid Films 519:6135–6139

    Article  Google Scholar 

  12. Dalt SD, Takimi AS, Volkmer TM, Sousa VC, Bergmann CP (2011) Powder Technol 210:103–108

    Article  Google Scholar 

  13. Chandradass J, Jadha AH, Kim H (2012) Appl Surf Sci 258:3315–3320

    Article  Google Scholar 

  14. Sasaki T, Ohara S, Naka T, Vejpravova J, Sechovsky V, Umetsu M, Takami S, Jeyadevan B, Adschiri T (2010) J Supercrit Fluids 53:92–94

    Article  Google Scholar 

  15. Hessien MM, Zaki ZI, Mohsen Q (2011) Int J Mater Sci 1:30–34

    Google Scholar 

  16. Thant AA, Srimala S, Kaung P, Itoh M, Radzali O, Fauzi MNA (2010) J Aust Ceram Soc 46:11–14

    Google Scholar 

  17. Soltanmohammad S, Asgari S (2010) J Nanomater 2010:104012

    Article  Google Scholar 

  18. Jazirehpour M, Shams MH, Khani O (2012) J Alloy Compd 545:32–40

    Article  Google Scholar 

  19. Asghar MH, Placido F, Naseem S (2006) Eur Phys J Appl Phys 35:177–184

    Article  Google Scholar 

  20. Asghar MH, Placido F, Naseem S (2006) Eur Phys J Appl Phys 36:119–124

    Article  Google Scholar 

  21. Riaz S, Naseem S, Xu YB (2011) J Sol-Gel Sci Technol 59:584–590

  22. Akbar A, Riaz S, Ashraf R, Naseem S (2014) IEEE Trans Magn. doi:10.1109/TMAG.2014.2311826

  23. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley, USA

    Google Scholar 

  24. Wahab MA (1999) Solid state physics. Narosa Publishing House, India

    Google Scholar 

  25. Brinker CJ, Scherer GW (1990) Sol–gel science—the physics and chemistry of sol–gel processing. Academic Press, New York

    Google Scholar 

  26. Riaz S, Naseem S (2007) J Mater Sci Technol 23:499–503

    Google Scholar 

  27. Hiti MAE (1999) J Magn Magn Mater 192:305–313

    Article  Google Scholar 

  28. Verma KC, Ram M, Singh J, Kotnala RK (2011) J Alloy Compd 509:4967–4971

    Article  Google Scholar 

  29. Nasir S, Asghar G, Malik MA, Rehman MA (2011) J Sol–Gel Sci Technol 59:111–116

    Article  Google Scholar 

  30. Chauhan S, Arora M, Sati PC, Chhoker S, Katyal SC, Kumar M (2013) Ceram Int 39:6399–6405

    Article  Google Scholar 

  31. Sen K, Singh K, Gautam A, Singh M (2012) Ceram Int 38:243–249

    Article  Google Scholar 

  32. Tang X, Zhu X, Dai J, Sun Y (2013) Acta Mater 61:1739–1747

    Article  Google Scholar 

  33. Cruz JP, Joanni E, Vilarinho PM, Kholkin AL (2010) J Appl Phys 108:114106

    Article  Google Scholar 

  34. Druc AC, Dumitrescu AM, Borhan AI, Nica V, Iordan AR, Palamaru MN (2013) Cent Eur J Chem 11:1330–1342

    Article  Google Scholar 

  35. Lekha PC, Ramesh G, Revathi V, Subramanian V (2014) Mater Res Bull 53:240–245

    Article  Google Scholar 

  36. Ziese M, Thornton MJ (2000) Spin electronics. Springer, New York

    Google Scholar 

  37. Buschow KHJ, Boer FR (2003) Physics of magnetism and magnetic materials. Kluwer Academic Publishers, New York

    Book  Google Scholar 

  38. Cheng J, VLazarov VK, Sterbinsky GE, Wessels BW (2009) J Vac Sci Technol B 27:148

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Naseem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, M., Riaz, S., Akbar, A. et al. Structural, magnetic and dielectric properties of spinel MgFe2O4 by sol–gel route. J Sol-Gel Sci Technol 74, 340–351 (2015). https://doi.org/10.1007/s10971-014-3529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3529-8

Keywords

Navigation