Skip to main content
Log in

Hierarchically organized silica monoliths: influence of different acids on macro- and mesoporous formation

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The influence of different acids, such as hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid and acetic acid on the polymerization-induced phase separation process in the formation of hierarchically organized silica monoliths was investigated in detail. Special emphasis is given to systems synthesized from tetrakis(2-hydroxyethoxy)silane (EGMS) or tetramethoxysilane (TMOS) as the silica source in the presence of Pluronic® P123 serving as structure-directing agent. The obtained silica monoliths exhibited a co-continuous and cellular macroporous structure comprising 2D hexagonally arranged mesopores with high specific surface areas ranging from 320–787 m2 g−1 independent of the applied silane precursor and regardless whether hydrochloric acid or sulfuric acid was used. A drastic change in macropore morphology to closed pores or particulate structures was observed for nitric, bromic as well as acetic acid. For sulfuric and nitric acid, the influence on the mesostructure was not as pronounced and 2D hexagonally arranged mesopores were obtained. With bromic and acetic acid a loss in mesopore ordering has been observed. Best developed hierarchically organized networks with respect to a co-continuous, cellular macroporous network, specific surface area and 2D hexagonally arranged mesopores were obtained for EGMS as well as for TMOS with P123 in sulfuric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure & Appl Chem 57:603–619

    Article  Google Scholar 

  2. Schüth F (2003) Angew Chem Int Ed 42:3604–3622

    Article  Google Scholar 

  3. El-Safty S (2008) J Porous Mater 15:369–387

    Article  Google Scholar 

  4. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710–712

    Article  Google Scholar 

  5. Thomas B, Baccile N, Masse S, Rondel C, Alric I, Valentin R, Mouloungui Z, Babonneau F, Coradin T (2011) J Sol–Gel Sci Technol 58:170–174

    Article  Google Scholar 

  6. Viau L, Néouze MA, Biolley C, Volland S, Brevet D, Gaveau P, Dieudonné P, Galarneau A, Vioux A (2012) Chem Mater 24:3128–3134

    Article  Google Scholar 

  7. Huo Q, Margolese DI, Ciesla U, Demuth DG, Feng P, Gier TE, Sieger P, Firouzi A, Chmelka BF (1994) Chem Mater 6:1176–1191

    Article  Google Scholar 

  8. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Chem Int Ed 45:3216–3251

    Article  Google Scholar 

  9. Nakanishi K (1997) J Porous Mater 4:67–112

    Article  Google Scholar 

  10. Smått J-H, Schunk S, Lindén M (2003) Chem Mater 15:2354–2361

    Article  Google Scholar 

  11. Inayat A, Reinhardt B, Uhlig H, Einicke WD, Enke D (2013) Chem Soc Rev 42:3753–3764

    Article  Google Scholar 

  12. Petkovich ND, Stein A (2013) Chem Soc Rev 42:3721–3739

    Article  Google Scholar 

  13. Nakanishi K, Amatani T, Yano S, Kodaira T (2008) Chem Mater 20:1108–1115

    Article  Google Scholar 

  14. Sattler K, Hoffmann H (1999) Prog Colloid Polym Sci 112:40–44

    Article  Google Scholar 

  15. Hüsing N, Raab C, Torma V, Roig A, Peterlik H (2003) Chem Mater 15:2690–2692

    Article  Google Scholar 

  16. Brook MA, Chen Y, Guo K, Zhang Z, Brennan JD (2004) J Mater Chem 14:1469–1479

    Article  Google Scholar 

  17. Dong H, Brennan JD (2006) Chem Mater 18:4176–4182

    Article  Google Scholar 

  18. Brinker CJ, Scherer GW (1990) Sol-Gel, The Physics and Chemistry of Sol-Gel ProcessingScience. Academic Press, New York

    Google Scholar 

  19. Chao MC, Chang CH, Lin HP, Tang CY, Lin CY (2009) J Mater Sci 44:6453–6462

    Article  Google Scholar 

  20. Manet S, Schmitt J, Impéror-Clerc M, Zholobenko V, Durand D, Oliveira CLP, Pedersen JS, Gervais C, Baccile N, Babonneau F, Grillo I, Meneau F, Rochas C (2011) J Phys Chem B 115:11330–11344

    Article  Google Scholar 

  21. Brandhuber D, Torma V, Raab C, Peterlik H, Kulak A, Hüsing N (2005) Chem Mater 17:4262–4271

    Article  Google Scholar 

  22. Mehrotra R, Narain R (1967) Indian J Chem 5:444–448

    Google Scholar 

  23. Hüsing N, Schubert U (1998) Angew Chem Int Ed 37:22–45

    Article  Google Scholar 

  24. Brandhuber D, Hüsing N, Raab CK, Torma V, Peterlik H (2005) J Mater Chem 15:1801–1806

    Article  Google Scholar 

  25. Soni SS, Brotons G, Bellour M, Narayanan T, Gibaud A (2006) J Phys Chem B 110:15157–15165

    Article  Google Scholar 

  26. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  Google Scholar 

  27. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380

    Article  Google Scholar 

  28. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036

    Article  Google Scholar 

  29. pKa Table (2005) Ripin DH, Evans DA, Washington.depts.washington.edu/eooptic/linkfiles/evans_pKa_table.pdf. Accessed 25 Mar 2014

  30. Fritscher C (2008) Self-assembly, hierarchical structure and mechanical properties of (Organo-)silica monoliths. PhD thesis, Vienna University of Technology, Vienna

  31. Hartmann S (2009) Hierarchically organized (hybrid) silica monoliths for the application as stationary phases in HPLC. PhD thesis, University of Ulm, Ulm

  32. Kruk M, Jaroniec M (2001) Chem Mater 13:3169–3183

    Article  Google Scholar 

  33. Smarsly BM, Mascotto S, Weidmann C, Kaper H (2010) Chem Ing Tech 82:823–828

    Article  Google Scholar 

  34. Leontidis E (2002) Curr Opin Colloid Interface Sci 7:81–91

    Article  Google Scholar 

  35. Alexandridis P, Holzwarth JF (1997) Langmuir 13:6074–6082

    Article  Google Scholar 

  36. Kabalnov A, Olsson U, Wennerstroem H (1995) J Phys Chem 99:6220–6230

    Article  Google Scholar 

Download references

Acknowledgments

S. F. and N. H. acknowledge the Deutsche Forschungsgemeinschaft (Proj. No. HU 1427/5-1) for financial support. J. A. and H. P. acknowledge the Deutsche Forschungsgemeinschaft (Proj. No. PE 1732/1-2) and the Austrian Science Fonds FWF (Proj. No. I449) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Hüsing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flaig, S., Akbarzadeh, J., Peterlik, H. et al. Hierarchically organized silica monoliths: influence of different acids on macro- and mesoporous formation. J Sol-Gel Sci Technol 73, 103–111 (2015). https://doi.org/10.1007/s10971-014-3500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3500-8

Keywords

Navigation