Skip to main content
Log in

Role of graphene in structural transformation of zirconium oxide

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Fine powders of zirconium oxide (ZrO2) were prepared using zirconium oxychloride by combustion method. The crystalline size of pure ZrO2 was in range of 14–45 nm. Graphene was incorporated in ZrO2 using graphene oxide as precursor and reducing it with hydrazine hydrate. X-Ray diffraction, Fourier transform infra-red spectroscopy, thermogravimetric analysis and Raman spectroscopy methods were used to characterize the samples. The role of graphene in structural transformation of ZrO2 to monoclinic phase was clearly observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shuping P, Hoi TN, Xinliang F, Klaus M (2009) Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors. Adv Mater 21:3488–3491

    Article  Google Scholar 

  2. Qi S, Shuping P, Vajiheh A, Chen L, Xinliang F, Klaus M (2009) Composites of graphene with large aromatic molecules. Adv Mater 21:3191–3195

    Article  Google Scholar 

  3. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  Google Scholar 

  4. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  Google Scholar 

  5. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  6. Michael JM, Je-Luen L, Douglas HA, Hannes CS, Ahmed AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Pruda RK, Ilhan AA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404

    Article  Google Scholar 

  7. Yongchao S, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682

    Article  Google Scholar 

  8. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720–7721

    Article  Google Scholar 

  9. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  10. Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158

    Article  Google Scholar 

  11. Sungjin P, Rodney SR (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  Google Scholar 

  12. Yanwu Z, Weiwei C, Richard PD, Aruna V, Rodney RS (2009) Transparent self-assembled films of reduced graphene oxide platelets. Appl Phys Lett 95:103104

    Article  Google Scholar 

  13. Laura CJ, Franklin K, Jiaxing H (2009) Langmuir–Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049

    Article  Google Scholar 

  14. Williams G, Seger B, Kamat PV (2008) TiO2- graphene nanocomposites. UV–assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491

    Article  Google Scholar 

  15. Abolfazli M, Tamizi far M, Arzani K, Naghizadeh R (2013) Study the effect of zirconia to increase the abrasion resistance and density in alumina–zirconia system. J Basic Appl Sci Res 3:40–48

    Google Scholar 

  16. Miura N, Nakatou M, Zhuiykov S (2002) Impedance-based total-NOx sensor using stabilized zirconia and ZnCrzO4 sensing electrode operating at high temperature. Electrochem Commun 4:284–287

    Article  Google Scholar 

  17. Lia L, Wang W (2003) Synthesis and characterization of monoclinic ZrO2 nanorods by a novel and simple precursor thermal decomposition approach. Solid State Commun 127:639–643

    Article  Google Scholar 

  18. Krumov E, Dikova J, Starbova K, Popov D, Blaskov V, Kolev K, Laude LD (2003) Thin ZrO2 sol–gel films for catalytic application. J Mater Sci: Mater Electron 14:759–760

    Google Scholar 

  19. Bokhimi X, Morales A, Novaro O, López T, Gómez R (2000) The effect of hydrolysis initiator on the phase formation in sulfated sol–gel zirconia. Polyhedron 19:2283–2287

    Article  Google Scholar 

  20. Rifki S, Bambang SP, Suhanda S (2013) Effect of the hydrolysis catalyst NH4OH on the preparation of calcia stabilized zirconia with sugar as a masking agent at low temperatures. J Aust Ceram Soc 49:101–108

    Google Scholar 

  21. Jelena PM, Slobodan KM (2006) Synthesis of zirconia colloidal dispersions by forced hydrolysis. J Serb Chem Soc 71:613–619

    Article  Google Scholar 

  22. Xinmei L, Gaoqing L, Zifeng Y (2003) Preliminary synthesis and characterization of mesoporous nanocrystalline zirconia. J Nat Gas Chem 12:161–166

    Google Scholar 

  23. Shi-Chang Z, Messin Gary L, Michael B (1990) Synthesis of solid, spherical zirconia particles by spray pyrolysis. J Am Chem Soc 73:61–67

    Google Scholar 

  24. Hergen E, Brian M (1995) Tissue Synthesis of nanophase ZnO, Eu2O3, and ZrO2 by gas- phase condensation with cw-CO2 laser heating. Mater Lett 24:261–265

    Article  Google Scholar 

  25. Jian L, Haixue Y, Mike JR, Kyle J (2012) Toughening of zirconia/alumina composites by the addition of graphene platelets. J Eur Ceram Soc 32:4185–4193

    Article  Google Scholar 

  26. Jingming G, Xingju M, Huifang W, Dandan S (2012) Facile synthesis of zirconia nanoparticles-decorated graphene hybrid nanosheets for an enzymeless methyl parathion sensor. Sens Actuators B Chem 162:341–347

    Article  Google Scholar 

  27. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  28. Chen KL, Anthony STC, Tsao HK (2001) Preparation of zirconia nanocrystals from concentrated zirconium aqueous solutions. J Nanopart Res 3:119–126

    Article  Google Scholar 

  29. Lupo F, Kamalakaran R, Scheu C, Grobert N, Rühle M (2004) Microstructural investigations on zirconium oxide–carbon nanotube composites synthesized by hydrothermal crystallization. Carbon 42:1995–1999

    Article  Google Scholar 

  30. Mishra M, Kuppusami P, Singh A, Ramya S, Sivasubramanian V, Mohandas E (2012) Phase evolution in zirconia thin films prepared by pulsed laser deposition. Appl Surf Sci 258:5157–5165

    Article  Google Scholar 

  31. Fillit R, Schafer RJ, Bruyas RH, Thevenot RF (1987) Quantitative XRD analysis of zirconia-toughened alumina ceramics. J Mater Sci 22:3566–3570

    Article  Google Scholar 

  32. Bansal GK, Heuer AH (1975) Precipitation in partially stabilized zirconia. J Am Ceram Soc 58:235–238

    Article  Google Scholar 

  33. Gutzov S, Ponahlo J, Christian LL, Beran A (1994) Phase characterization of precipitated zirconia. J Am Ceram Soc 77:1649–1652

    Article  Google Scholar 

  34. Benedetti A, Fagherazzi G, Pinna F (1989) Preparation and structural characterization of ultrafine zirconia powders. J Am Ceram Soc 72:467–469

    Article  Google Scholar 

  35. Siu GG, Stokes MJ (1999) Variation of fundamental and higher-order Raman spectra of ZrO2 nanograins with annealing temperature. Phys Rev 59:3173–3179

    Article  Google Scholar 

  36. Damilola AD, Madhivanan M, Gerardine GB (2010) Density functional theory analysis of Raman frequency modes of monoclinic zirconium oxide using gaussian basis sets and isotopic substitution. J Phys Chem B 114:9323–9329

    Article  Google Scholar 

  37. Jorio A, Dresselhaus M, Saito R, Dresselhaus GF (2011) Raman spectroscopy in graphene related systems. Wiley, New York

    Book  Google Scholar 

  38. Yu J, Ma T, Liu S (2011) Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys Chem Chem Phys 13:3491–3501

    Article  Google Scholar 

  39. Zhang T, Zhang D, Shen MA (2009) Low-cost method for preliminary separation of reduced graphene oxide nanosheet. J Mater Lett 63:2051–2054

    Article  Google Scholar 

  40. Zhenghai T, Liqun Z, Chunfang Z, Tengfei L, Baochun G (2012) General route to graphene with liquid-like behavior by non-covalent modification. Soft Matter 8:9214–9220

    Article  Google Scholar 

  41. Yanxia H, Jiansheng L, Xujie Y, Xin W, Lude L (2004) Preparation of ZrO2–Al2O3 composite membranes by sol–gel process and their characterization. Mater Sci Eng A 367:243–247

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors Sumita Rani (SR) is thankful to Department of Science and Technology (DST), India for awarding Inspire fellowship to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumita Rani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Kumar, M., Sharma, S. et al. Role of graphene in structural transformation of zirconium oxide. J Sol-Gel Sci Technol 71, 470–476 (2014). https://doi.org/10.1007/s10971-014-3401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3401-x

Keywords

Navigation