Skip to main content
Log in

GPS patch antenna performance by modification of Zn(1−x)CaxAl2O4-based microwave dielectric ceramics

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study reports the characterization, fabrication, and performance of global positioning systems (GPS) patch antennas as a function of calcium (Ca) concentration and dielectric constant (ɛ r ). Zn(1−x)CaxAl2O4 (x = 0.00, 0.05, 0.10, 0.20, 0.25, and 0.30) thin films were prepared through a sol–gel method. The effects of added Ca on the nanostructures and dielectric properties of ZnAl2O4 ceramics were investigated. The addition of Ca increased the crystallite size, grain size, and surface morphology, thereby increasing the density and dielectric constant. As the Ca content increased, the ɛ r values linearly increased. However, the Q u values decreased (at x = 0.25 to x = 0.25) after achieving the optimum values at x = 0.20. Finally, GPS patch antennas were successfully fabricated using the Zn(1−x)CaxAl2O4 material. The patch antenna sizes decreased as ɛ r increased from 2.88  × 4.37 cm (ɛ r  ≈ 8.52) to 2.88  × 4.37 cm (ɛ r  ≈ 10.16). The performance (return loss analysis) and operating frequencies of the GPS patch antennas were measured using the PNA series network analyzer. Results show that the patch antenna resonates at frequency of 1.570 GHz and produces a return loss bandwidth between −16.6 and −27.5 dB. The optimal performance of GPS patch antenna with ɛ r  ≈ 9.95, Q u  ≈ 6,186, and return loss = −27.5 dB was obtained from specimen using Zn0.80Ca0.20Al2O4 (x = 0.20) ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huang C-L, Chen J-Y, Wang Y-H (2009) J Alloy Compd 478:842–846

    Article  Google Scholar 

  2. Huang C-L, Chen J-Y, Tseng Y-W (2010) Mater Sci Eng B 167:142–146

    Article  Google Scholar 

  3. Lei W, Lu W-Z, Zhu J-H, Ye X (2009) Ceram Int 35:277–280

    Article  Google Scholar 

  4. Tseng C-F, Tsai P-S (2013) Ceram Int 39:75–79

    Article  Google Scholar 

  5. Sebastian MT (2008) In: Jordan Hill (ed). Dielectric materials for wireless communication, vol, First Edition edn. UK Elsevier Ltd, Oxford

    Google Scholar 

  6. Tsunooka T, Androu M, Higashida Y, Sugiura H, Ohsato H (2003) J Eur Ceram Soc 23:2573–2578

    Article  Google Scholar 

  7. Kim JC, Kim MH, Lim JB, Nahm S, Paik JH, Kim JH (2007) J Am Ceram Soc 90:641–644

    Article  Google Scholar 

  8. Wang X, Lei W, Lu W (2009) Ferroelectrics 388:80–87

    Article  Google Scholar 

  9. Wu J-M, Lu W-Z, Lei W, Wang X-C (2011) Mater Res Bull 46:1485–1489

    Article  Google Scholar 

  10. Silva AAD, Goncalves ADS, Davolos MR (2009) J Sol Gel Sci Technol 49:101–105

    Article  Google Scholar 

  11. Surendran KP, Santha N, Mohanan P, Sebastian MT (2004) Eur Phys J B Condens Matter Complex Syst 41:301–306

    Article  Google Scholar 

  12. Lei W, Lu WZ, Wang XH, Liang F, Wang J (2011) J Am Ceram Soc 94:20–23

    Article  Google Scholar 

  13. Lei W, Lu WZ, Zhu JH, Wang XH (2007) Mater Lett 61:4066–4069

    Article  Google Scholar 

  14. Lei W, Lu W-Z, Liu D, Zhu J-H (2009) J Am Ceram Soc 92:105–109

    Article  Google Scholar 

  15. Lei W, Lu W-Z, Zhu J-H, Liang F, Liu D (2008) J Am Ceram Soc 91:1958–1961

    Article  Google Scholar 

  16. Huang C-L, Yang T-J, Huang C-C (2009) J Am Ceram Soc 92:119–124

    Article  Google Scholar 

  17. Kurajica S, Tkalčec E, Gržeta B, Iveković D, Mandić V, Popović J, Kranzelić D (2011) J Alloy Compd 509:3223–3228

    Article  Google Scholar 

  18. Martins RF, Serra OA (2010) J Braz Chem Soc 21:1395–1398

    Article  Google Scholar 

  19. Barros BS, Melo PS, Kiminami RHGA, Costa ACFM, Sá GF, Alves S Jr (2006) J Mater Sci 41:4744–4748

    Article  Google Scholar 

  20. Huang CL, Chen JY, Li BJ (2009) J Alloy Compd 484:494–497

    Article  Google Scholar 

  21. Chen YC (2011) Ultrason Ferroelectr Freq Control IEEE Trans 58:2531–2538

    Article  Google Scholar 

  22. Tian X, Wan L, Pan K, Tian C, Fu H, Shi K (2009) J Alloy Compd 488:320–324

    Article  Google Scholar 

  23. Charinpanitkul T, Poommarin P, Wongkaew A, Kim K-S (2009) J Ind Eng Chem 15:163–166

    Article  Google Scholar 

  24. de Souza LKC, Zamian JR, da Rocha Filho GN, Soledade LEB, dos Santos IMG, Souza AG, Scheller T, Angélica RS, da Costa CEF (2009) Dyes Pigments 81:187–192

    Article  Google Scholar 

  25. Zawadzki M, Staszak W, López Suárez FE, Illán Gómez MJ, Bueno López A (2009) Appl Catal A Gen 371:92–98

    Article  Google Scholar 

  26. Kumar RT, Selvam NCS, Ragupathi C, Kennedy LJ, Vijaya JJ (2012) Powder Technol 224:147–154

    Article  Google Scholar 

  27. Kim JS, Kim JS, Park HL (2004) Solid State Commun 131:735–738

    Article  Google Scholar 

  28. Beier MJ, Hansen TW, Grunwaldt JD (2009) J Catal 266:320–330

    Article  Google Scholar 

  29. Nikumbh AK, Adhyapak PV (2010) Powder Technol 202:14–23

    Article  Google Scholar 

  30. Zhang H, Fang L, Elsebrock R, Yuan RZ (2005) Mater Chem Phys 93:450–454

    Article  Google Scholar 

  31. Jamal E, Kumar D, Anantharaman MR (2011) Bull Mater Sci 34:251–259

    Article  Google Scholar 

  32. Abdullah H, Jalal W, Zulfakar M (2014) J Sol Gel Sci Technol 69:429–440

    Article  Google Scholar 

  33. Xavier CS, Sczancoski JC, Cavalcante LS, Paiva-Santos CO, Varela JA, Longo E, Li MS (2009) Solid State Sci 11:2173–2179

    Article  Google Scholar 

  34. Nazir S, Ikram N, Amin B, Tanveer M, Shaukat A, Saeed Y (2009) J Phys Chem Solids 70:874–880

    Article  Google Scholar 

  35. Arya GS, Negi NS (2013) J Phys D Appl Phys 46:095004

    Article  Google Scholar 

  36. Koops CG (1951) Phys Rev 81:121–124

    Article  Google Scholar 

  37. Wagner KW (1913) Ann Phys 345:817–855

    Article  Google Scholar 

  38. Subramanian MA, Shannon RD, Chai BHT, Abraham MM, Wintersgill MC (1989) Phys Chem Miner 16:741–746

    Article  Google Scholar 

  39. Kingery W, Bowen H, Uhlmann D (1976) Introduction to ceramics. Willey, New York

    Google Scholar 

  40. Huang C-L, Tasi C-F, Chen Y-B, Cheng Y-C (2008) J Alloy Compd 453:337–340

    Article  Google Scholar 

  41. Chen Y-B (2011) J Alloy Compd 509:2285–2288

    Article  Google Scholar 

  42. Sotoudeh H-H, Joseph C, Sooseok O, Ju-Ung J, Noh-Joon P, Dae-Hee P (2009) J Electr Eng Technol 4:282–286

    Article  Google Scholar 

  43. Balanis CA (2005) Antenna theory analysis and design, 3rd edn. Wiley, Hoboken

    Google Scholar 

  44. Huang CL, Tseng CF, Yang WR, Yang TJ (2008) J Am Ceram Soc 91:2201–2204

    Article  Google Scholar 

Download references

Acknowledgments

This project is carried out in Photonic Technology Laboratory, Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huda Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalal, W.N.W., Abdullah, H., Zulfakar, M.S. et al. GPS patch antenna performance by modification of Zn(1−x)CaxAl2O4-based microwave dielectric ceramics. J Sol-Gel Sci Technol 71, 477–489 (2014). https://doi.org/10.1007/s10971-014-3397-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3397-2

Keywords

Navigation