Skip to main content
Log in

A polyacrylamide gel route to different-sized CaTiO3 nanoparticles and their photocatalytic activity for dye degradation

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Calcium titanate (CaTiO3) nanoparticles with different average sizes were prepared by a polyacrylamide gel route, where the particle size was tailored by using different chelating agents. Scanning electron microscope observation shows that the samples prepared by using the chelating agents EDTA, acetic acid, tartaric acid, and citric acid have an average particle size of 25, 33, 36, and 55 nm, respectively. All the particles are regularly shaped like spheres. The bandgap energy of the four samples is measured to be 3.66–3.59 eV by ultraviolet (UV)–visible diffuse reflectance spectroscopy. The photocatalytic activity of the prepared CaTiO3 samples was evaluated by the degradation of methyl orange under 254 nm UV irradiation, revealing that they exhibit a good photocatalytic activity. Hydroxyl radicals are revealed, by the photoluminescence technique using terephthalic acid as a probe molecule, to be produced on the irradiated CaTiO3 nanoparticles and suggested to be the primary active species toward the dye degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mills A, Davies RH, Worsley D (1993) Chem Soc Rev 22:417

    Article  Google Scholar 

  2. Hoffmann MR, Martin ST, Choi WY, Bahneman DW (1995) Chem Rev 95:69

    Article  Google Scholar 

  3. Jang JS, Borse PH, Lee JS, Lim KT, Jung OS, Jeong ED, Bae JS, Kim HG (2011) Bull Korean Chem Soc 32:95

    Article  Google Scholar 

  4. Zhang H, Chen G, He X, Xu J (2012) J Alloys Compd 516:91

    Article  Google Scholar 

  5. Shi J, Guo L (2012) Prog Nat Sci Mater Int 22:592

    Article  Google Scholar 

  6. Puangpetch T, Sommakettarin P, Chavadej S, Sreethawong T (2010) Int J Hydrogen Energy 35:12428

    Article  Google Scholar 

  7. Sun W, Zhang S, Wang C, Liu Z, Mao Z (2007) Catal Lett 119:148

    Article  Google Scholar 

  8. Arbuj SS, Hawaldar RR, Varma S, Waghmode SB, Wani BN (2012) Sci Adv Mater 4:568

    Article  Google Scholar 

  9. Lemański K, Gągor A, Kurnatowska M, Pązik R, Dereń PJ (2011) J Solid State Chem 184:2713

    Article  Google Scholar 

  10. Fujiwara R, Sano H, Shimizu M, Kuwabara M (2009) J Lumin 129:231

    Article  Google Scholar 

  11. Oliveira LH, de Moura AP, Mazzo TM, Ramírez MA, Cavalcante LS, Antonio SG, Avansi W, Mastelaro VR, Longo E, Varela JA (2012) Mater Chem Phys 136:130

    Article  Google Scholar 

  12. Zhang F, Chena S, Lin C, Yin Y (2011) Appl Surf Sci 257:3092

    Article  Google Scholar 

  13. Tan S, Yang P, Li C, Wang W, Wang J, Zhang M, Jing X, Lin J (2010) Solid State Sci 12:624

    Article  Google Scholar 

  14. Cavalcantea LS, Marques VS, Sczancoski JC, Escote MT, Joya MR, Varela JA, Santos MRMC, Pizani PS, Longo E (2008) Chem Eng J 143:299

    Article  Google Scholar 

  15. Zhang X, Zhang J, Ren X, Wang X (2008) J Solid State Chem 181:393

    Article  Google Scholar 

  16. Yang X, Fu J, Jin C, Chen J, Liang C, Wu M, Zhou W (2010) J Am Chem Soc 132:14279

    Article  Google Scholar 

  17. Sun JH, Yang H (2014) Ceram Int 40:6399

    Article  Google Scholar 

  18. Yang H, Cao ZE, Shen X, Jiang JL, Wei ZQ, Dai JF, Feng WJ (2009) Mater Lett 63:665

    Google Scholar 

  19. Wang SF, Yang H, Xian T, Liu XQ (2011) Catal Commun 12:625

    Article  Google Scholar 

  20. Zhu A, Wang J, Du Y, Zhao D, Gao Q (2012) Phys B 407:849

    Article  Google Scholar 

  21. Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum Press, New York

    Book  Google Scholar 

  22. Andersen T, Haugen HK, Hotop H (1999) J Phys Chem Ref Data 28:1511

    Article  Google Scholar 

  23. Tachikawa T, Fujitsuka M, Majima T (2007) J Phys Chem C 111:5259

    Article  Google Scholar 

  24. Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K (2007) J Phys Chem C 111:7574

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51262018) and the Hongliu Outstanding Talents Foundation of Lanzhou University of Technology (Grant No. J201205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Y.S., Yang, H., Xian, T. et al. A polyacrylamide gel route to different-sized CaTiO3 nanoparticles and their photocatalytic activity for dye degradation. J Sol-Gel Sci Technol 71, 254–259 (2014). https://doi.org/10.1007/s10971-014-3366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3366-9

Keywords

Navigation