Skip to main content

Advertisement

Log in

Effects of hydrophobic polyhedral oligomeric silsesquioxane coating on water vapour barrier and water resistance properties of paperboard

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The substitution of fossil based packaging materials with materials from renewable sources is a topic of current interest. Polyhedral oligomeric silsesquioxanes with fatty acid moieties can have a renewable content of more than 90 % and are therefore called bio-POSS. In this study the bio-POSS octa-(ethyl erucamide) silsesquioxane was coated on a paperboard substrate as a liquid coating. The water resistance and the water vapour barrier properties of the paperboard were improved. Samples on which the bio-POSS coating layer was dried at 80 °C had a slightly higher water resistance and water vapour barrier than samples dried at room temperature. UV treatment of the coating layer had little effect. Solid state 1H-NMR of UV treated coatings showed no reaction of double bonds of bio-POSS in the coating layer. Multiple coating considerably enhanced the water resistance and water vapour barrier properties of the paperboard, due to an increase in the coating thickness and a reduction in number of pores on top coated surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Bio-POSS:

Octa-(ethyl erucamide) silsesquioxane

CTMP:

Chemithermomechanical pulp

ATR-FTIR:

Attenuated total reflection Fourier transform infrared spectroscopy

1H-NMR:

Proton nuclear magnetic resonance spectroscopy

References

  1. Rhim JW, Lee JH, Hong SI (2006) LWT Food Sci Technol 39:806

    Article  Google Scholar 

  2. Suchada T, Tunyarut J, Ampron S, Pornchai R, Dheerawan B (2008) J Metal Mater Min 18(2):153

    Google Scholar 

  3. Butkinaree S, Jinkarn T, Yoksan R (2008) J Metal Mater Min 18:219–222

    Google Scholar 

  4. Archaviboonyobul T, Jinkarn T, Sane S, Chariyachotilert S, Kongcharoenkiat S Packaging Technol. Sci. doi:10.1002/pts.2034

  5. Han J, Salmieri S, Le TC, Lacroix M (2010) J Agric Food Chem 58(5):3125–3131

    Article  Google Scholar 

  6. http://www.iscst.org/pages/ISCSTConf/ISCST2012/Posters/10%20Recalde.pdf

  7. Amberg-Schwab S, Hoffmann M, Bader H, Gessler M (1998) J Sol Gel Sci Technol 13:141

    Article  Google Scholar 

  8. Schwab JJ, Lichtenhan JD (1998) Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Appl Organometal Chem 12:707

    Article  Google Scholar 

  9. Markovic E, Constantopolous K, Matisons JG (2011) Application of Polyhedral Oligomeric Silsesquioxanes: Chap. 1. Hartmann-Thompson C (ed) Advances in Silicon Science 3, 5

  10. Fina A, Tabuani D, Frache A, Camino G (2005) Polymer 46:7855–7866

    Article  Google Scholar 

  11. Sánchez-Soto M, Schiraldi DA, Illescas S (2009) Eur Polym J 45:341

    Article  Google Scholar 

  12. Lim SK, Hong EP, Choi H, Chin IJ (2010) J Ind Eng Chem 16:189

    Article  Google Scholar 

  13. Bourbigot S, Turf T, Bellayer S, Duquesne S (2009) Polym Degrad Stab 94:1230

    Article  Google Scholar 

  14. Zhang Z, Gu A, Liang G, Ren P, Xie J, Wang X (2007) Polym Degrad Stab 92:1986

    Article  Google Scholar 

  15. Ramírez C, Rico M, Torres A, Barral L, López J, Montero B (2008) Eur Polym J 44:3035

    Article  Google Scholar 

  16. Matějka L, Murias P, Pleštil J (2012) Eur Polym J 48:260

    Article  Google Scholar 

  17. Mirchandani G, Waghoo G, Parmar R, Haseebuddin S, Ghosh SK (2009) Prog Organ Coat 65(4):444

    Article  Google Scholar 

  18. Jerman I, Koželj M, Orel B (2010) Solar Energy Mater Solar Cells 94:232

    Article  Google Scholar 

  19. Amerio E, Sangermano M, Colucci G, Malucelli G, Messori M, Taurino R, Fabbri P (2008) Macromol Mater Eng 293:700

    Article  Google Scholar 

  20. Männle F, Tofteberg TR, Skaugen M, Bu H, Peters T, Dietzel PDC, Pilz M (2011) J Nanopart Res 13:4691

    Article  Google Scholar 

  21. http://www.pbmdf.com/Liquid-Coatings

  22. http://www.senlights.com/gijyuu/uvcure/UVcuring.html

  23. Tillet G, Boutevin B, Ameduri B (2011) Prog Poly Sci 36:192

    Article  Google Scholar 

  24. http://www.sintef.no/Projectweb/FunzioNano/Synthesis-of-FunzioNano-/

  25. Standard test methods for water vapour transmission of materials, ASTM E96/E96 M-10

  26. http://en.wikipedia.org/wiki/Vapour_pressure_of_water

  27. http://www.ipst.gatech.edu/faculty/ragauskas_art/technical_reviews/FT-IR.pdf

  28. Rao CNR (1963) Chemical applications of infrared spectroscopy, vol 125. Academic Press, New York

    Google Scholar 

  29. Crank J (1975) The mathematics of diffusion, vol 266, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgments

The authors thank the Research Council of Norway and the industrial partners Dynea AS, Elopak AS, Forestia AS, Korsnäs AB, Peterson AS, and Södra AB in the KMB project (sustain-Barrier 182619) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tuan-Anh Nguyen or Ferdinand Männle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, TA., Gregersen, Ø.W., Männle, F. et al. Effects of hydrophobic polyhedral oligomeric silsesquioxane coating on water vapour barrier and water resistance properties of paperboard. J Sol-Gel Sci Technol 69, 237–249 (2014). https://doi.org/10.1007/s10971-013-3208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3208-1

Keywords

Navigation