Skip to main content
Log in

Tunable optical stop band of silica shell photonic crystals

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, optical stop band of three-dimensional silica shell photonic crystals is tuned by adjusting inner diameter and shell thickness of hollow silica spheres. The silica shell photonic crystals are fabricated by sintering crystalline arrays, which are assembled from polystyrene/silica core–shell spheres by an improved vertical deposition method. The inner diameter and the shell thickness are controlled by diameter of polystyrene spheres and concentration of tetraethoxysilane. The results of transmission spectra show that there is an evident red shift of optical stop band as the inner diameter and the shell thickness increase. The red shift of optical stop band is due to variations in the inter-planar spacing and the effective refractive index of silica shell photonic crystals, which result from the variations of the inner diameter and the shell thickness of hollow silica spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lou XWD, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019

    Article  CAS  Google Scholar 

  2. Zhao Y, Jiang L (2009) Hollow micro/nano materials with multilevel interior structures. Adv Mater 21:3621–3638

    Article  CAS  Google Scholar 

  3. Hu J, Chen M, Fang XS, Wu LM (2011) Fabrication and application of inorganic hollow spheres. Chem Soc Rev 40:5472–5491

    Article  CAS  Google Scholar 

  4. Li Y, Kunitake T, Fujikawa S (2006) Efficient fabrication and enhanced photocatalytic activities of 3D-ordered films of titania hollow spheres. J Phys Chem B 110:13000–13004

    Article  CAS  Google Scholar 

  5. Kim SW, Kim M, Lee WY, Hyeon T (2002) Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. J Am Chem Soc 124:7642–7643

    Article  CAS  Google Scholar 

  6. Martinez CJ, Hockey B, Montgomery CB, Semancik S (2005) Porous tin oxide nano structured microspheres for sensor applications. Langmuir 21:7937–7944

    Article  CAS  Google Scholar 

  7. Zhang HG, Zhu QS, Zhang Y, Wang Y, Zhao L, Yu B (2007) One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv Funct Mater 17:2766–2771

    Article  CAS  Google Scholar 

  8. Chen JF, Ding HM, Wang JX, Shao L (2004) Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials 25:723–727

    Article  Google Scholar 

  9. Botterhuis NE, Sun QY, Magusin PCMM, Van Santen RA, Sommerdijk NAJM (2006) Hollow silica spheres with an ordered pore structure and their application in controlled release studies. Chem Eur J 12:1448–1456

    Article  CAS  Google Scholar 

  10. Kreft O, Prevot M, Mohwald H, Sukhorukov GB (2007) Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions. Angew Chem Int Ed 46:5605–5608

    Article  CAS  Google Scholar 

  11. Li HQ, Ha CS, Kim I (2009) Encapsulation of a single metal nanoparticle with tunable size in a monodisperse polymer microcapsule. Macromol Rapid Commun 30:188–193

    Article  Google Scholar 

  12. Lou XW, Wang Y, Yuan CL, Lee JY, Archer LA (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18:2325–2329

    Article  CAS  Google Scholar 

  13. Lee KT, Jung YS, Oh SM (2003) Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J Am Chem Soc 125:5652–5653

    Article  CAS  Google Scholar 

  14. Nakamura H, Ishii M (2007) Optical properties of colloidal crystalline arrays composed of hollow polystyrene spheres. J Appl Polym Sci 103:2364–2368

    Article  CAS  Google Scholar 

  15. Rengarajan R, Jiang P, Colvin V, Mittleman D (2000) Optical properties of a photonic crystal of hollow spherical shells. Appl Phys Lett 77:3517–3519

    Article  CAS  Google Scholar 

  16. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062

    Article  CAS  Google Scholar 

  17. John S (1987) Strong localization of photons in certain disordered dielectric super lattices. Phys Rev Lett 58:2486–2489

    Article  CAS  Google Scholar 

  18. Wong S, Kitaev V, Ozin GA (2003) Colloidal crystal films: advances in universality and perfection. J Am Chem Soc 125:15589–15598

    Article  CAS  Google Scholar 

  19. Yang H, Jiang P (2010) Large-scale colloidal self-assembly by doctor blade coating. Langmuir 26:13173–13182

    Article  CAS  Google Scholar 

  20. Jiang QS, Li C, Shi S, Zhao D, Xiong L, Wei HL, Yi L (2012) Assembling ultra-thick and crack-free colloidal crystals via an isothermal heating evaporation induced self-assembly method. J Non-Cryst Solids 358:1611–1616

    Article  CAS  Google Scholar 

  21. Sakka S (2005) Handbook of sol-gel science and technology: processing, characterization, and applications, vol 3. Kluwer Academic Publisher, Boston

    Google Scholar 

  22. Gonçalves MC, Fortes LM, Almeida RM, Chiasera A, Chiappini A, Ferrari M, Bhaktha S (2010) Photoluminescence in Er3+/Yb3+ -doped silica-titania inverse opal structures. J SolGel Sci Technol 55:52–58

    Article  Google Scholar 

  23. Guddala S, Kamanoor SA, Chiappini A, Ferrari M, Desai NR (2012) Experimental investigation of photonic band gap influence on enhancement of Raman scattering in metal-dielectric colloidal crystals. J Appl Phys 112: 084303-1/7

    Google Scholar 

  24. Xu XL, Asher SA (2004) Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals. J Am Chem Soc 126:7940–7945

    Article  CAS  Google Scholar 

  25. Wang L, Asher SA (2009) Fabrication of silica shell photonic crystals through flexible core templates. Chem Mater 21:4608–4613

    Article  CAS  Google Scholar 

  26. Deng TS, Marlow F (2012) Synthesis of monodisperse polystyrene@vinyl-SiO2 core–shell particles and hollow SiO2 spheres. Chem Mater 24:536–542

    Article  CAS  Google Scholar 

  27. Lu Y, McLellan J, Xia Y (2004) Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells. Langmuir 20:3464–3470

    Article  CAS  Google Scholar 

  28. Yan QF, Zhou ZC, Zhao XS (2005) Inward-growing self-assembly of colloidal crystal films on horizontal substrates. Langmuir 21:3158–3164

    Article  CAS  Google Scholar 

  29. Du X, He J (2008) Facile size-controllable syntheses of highly monodisperse polystyrene nano- and microspheres by polyvinylpyrrolidone-mediated emulsifier-free emulsion polymerization. J Appl Polym Sci 108:1755–1760

    Article  CAS  Google Scholar 

  30. Jiang QS, Zhong J, Hu X, Song F, Ren K, Wei HL, Yi L (2012) Fabrication and optical properties of silica shell photonic crystals. Colloids Surf A Physicochem Eng Asp 415:202–208

    Article  CAS  Google Scholar 

  31. Zou H, Wu SS, Ran QP, Shen J (2008) A simple and low-cost method for the preparation of monodisperse hollow silica spheres. J Phys Chem C 112:11623–11629

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Analytical and Testing Center of Huazhong University of Science and Technology for all samples testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helin Wei or Lin Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Q., Li, K., Wei, H. et al. Tunable optical stop band of silica shell photonic crystals. J Sol-Gel Sci Technol 67, 565–572 (2013). https://doi.org/10.1007/s10971-013-3115-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3115-5

Keywords

Navigation