Skip to main content
Log in

The effect of heat treatment in the reducing atmosphere on the physical properties of TiO2 thin films prepared by sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Multilayered nanostructured TiO2 thin films were prepared by sol–gel and dipping deposition on quartz substrate followed by thermal treatment under reducing atmosphere (20 %H2–80 %Ar). Heat treatment at progressively higher temperatures caused structural, morphological, and optical changes, which were investigated by X-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, and UV–Vis spectroscopy. The conductivities of the thin films were also measured by 4-point probe method. The XRD results showed that the calcined TiO2 thin films consist of single anatase phase which was completely transformed into rutile phase after heat treatment at 1,000 °C. The grains of films grew by intra-agglomerate densification after heat treatment at higher temperatures. The root mean square roughness of the samples was found to be in the range of 0.58–3.36 nm. The partially reduced TiO2 samples have red-shifted transmittance bands due to new energy band formed by oxygen vacancies. The electrical conductivity of the films was also enhanced after heat treatment in reducing atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dholam R, Patel N, Adami M, Miotello A (2009) Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy 34:5337–5346

    Article  CAS  Google Scholar 

  2. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  3. Hosseingholi M, Pazouki M, Hosseinnia A, Aboutalebi SH (2011) Room temperature synthesis of nanocrystalline anatase sols and preparation of uniform nanostructured TiO2 thin films: optical and structural properties. J Phys D Appl Phys 44:055402

    Article  Google Scholar 

  4. Vicente GS, Morales A, Gutiérrez MT (2002) Sol–gel TiO2 antireflective films for textured monocrystalline silicon solar cells. Thin Solid Films 403–404:335–338

    Article  Google Scholar 

  5. Zakrzewska K, Radeska M, Rekas M (1997) Effect of Nb, Cr, Sn additions on gas sensing properties of TiO2 films. Thin Solid Films 310:161–166

    Article  CAS  Google Scholar 

  6. Banfi G, Degiorgo V, Ricard D (1998) Nonlinear optical properties of semiconductor nanocrystals. Adv Phys 47:447–510

    Article  CAS  Google Scholar 

  7. Jun J, Shin JH, Dhayal M (2006) Surface state of TiO2 treated with low ion energy plasma. Appl Surf Sci 252:3871–3877

    Article  CAS  Google Scholar 

  8. ORegan B, Gratzel M (1991) High-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  CAS  Google Scholar 

  9. Devi LG, Murthy BN, Kumar SG (2010) Photocatalytic activity of TiO2 doped with Zn2+ and V5+ transition metal ions: influence of crystallite size and dopant electronic configuration on photocatalytic activity. Mater Sci Eng B 166:1–6

    Article  CAS  Google Scholar 

  10. Xiao Q, Si Z, Yu Z, Qiu G (2007) Sol–gel auto-combustion synthesis of samarium-doped TiO2 nanoparticles and their photocatalytic activity under visible light irradiation. Mater Sci Eng B 137:189–194

    Article  CAS  Google Scholar 

  11. Jun J, Shin JH, Choi JS, Dhayal M (2006) Surface modification of TiO2 nanoparticles using electron beam radiation. J Biomed Nanotechnol 2:152–156

    Article  CAS  Google Scholar 

  12. Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photoelectrochemical hydrogen generation from water using solar energy. Int J Hydrogen Energy 27:991–1022

    Article  CAS  Google Scholar 

  13. Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S (2003) Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl Catal B 42:403–409

    Article  CAS  Google Scholar 

  14. Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi E (2000) Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal A Chem 161:205–212

    Article  CAS  Google Scholar 

  15. Brudnik A, Czternastek H, Zakrzewska K, Jachimowski M (1991) Plasma-emission-controlled d.c. magnetron sputtering of TiO2−x thin films. Thin Solid Films 199:45–58

    Article  CAS  Google Scholar 

  16. Marucco JF, Poumellec B, Gautron J, Lemasson P (1985) Thermodynamic properties of titanium dioxide, niobium dioxide and their solid solutions at high temperature. J Phys Chem Solids 46:709–717

    Article  CAS  Google Scholar 

  17. Millot F, Blanchin MG, Te′tot R, Marucco JF, Poumellec B, Picard C, Touzelin B (1987) High temperature nonstoichiometric rutile TiO2−x. Prog Solid State Chem 17:263–293

    Article  CAS  Google Scholar 

  18. Brinker CJ, Harrington MS (1981) Sol–gel derived antireflective coatings for silicon. Solar Energy Mater 5:159–172

    Article  CAS  Google Scholar 

  19. Fan Q, McQuillin B, Ray AK, Turner ML, Seddon AB (2000) High density, non-porous anatase titania thin films for device applications. J Phys D Appl Phys 33:2683–2686

    Article  CAS  Google Scholar 

  20. Garzella C, Comini E, Tempesti E, Frigeri C, Sberveglieri G (2000) TiO2 thin films by a novel sol–gel processing for gas sensor applications. Sens Actuators B 68:189–196

    Article  CAS  Google Scholar 

  21. Lottiaux M, Boulesteix C, Nihoul G (1989) Morphology and structure of TiO2 thin layers versus thickness and substrate temperature. Thin Solid Films 170:107–126

    Article  CAS  Google Scholar 

  22. Chow LLW, Yuen MMF, Chan PCH, Cheung AT (2001) Reactive sputtered TiO2 thin film humidity sensor with negative substrate bias. Sens Actuators B 76:310–315

    Article  CAS  Google Scholar 

  23. Oja I, Mere A, Krunks M, Nisumaa R, Solterbeck C-H, Es-Souni M (2006) Structural and electrical characterization of TiO2 films grown by spray pyrolysis. Thin Solid Films 515:674–677

    Article  CAS  Google Scholar 

  24. Yeung KS, Lam YW (1983) A simple chemical vapor deposition method for depositing thin TiO2 films. Thin Solid Films 109:169–178

    Article  CAS  Google Scholar 

  25. Kim DJ, Hahn SH, Hoon S, Kim EJ (2002) Variation of structural and optical properties of sol–gel TiO2 thin films with catalyst concentration and calcination temperature. Mater Lett 57:355–360

    Article  Google Scholar 

  26. Ahn YU, Kim EJ, Kim HT, Hahn SH (2003) Influence of calcinations temperature on structural and optical properties of TiO2 thin films prepared by sol–gel dip coating. Mater Lett 57:4660–4666

    Article  CAS  Google Scholar 

  27. Mathews NR, Morales ER, Cortés-Jacome MA, Antonio JAT (2009) TiO2 thin films–Influence of annealing temperature on structural, optical and photocatalytic properties. Sol Energy 83:1499–1508

    Article  CAS  Google Scholar 

  28. Martyanov IN, Klabunde KJ (2004) Comparative study of TiO2 particles in powder form and as a thin nanostructured film on quartz. J Catal 225:408–416

    Article  CAS  Google Scholar 

  29. Mahyar A, Behnajady MA, Modirshahla V (2010) Characterization and photocatalytic activity of SiO2–TiO2 mixed oxide nanoparticles prepared by sol–gel method. Ind J chem 49A:1593–1600

    CAS  Google Scholar 

  30. Strunk J, Vining WC, Bell AT (2010) A study of oxygen vacancy formation and annihilation in submonolayer coverages of TiO2 dispersed on MCM-48. J Phys Chem C 114:16937–16945

    Article  CAS  Google Scholar 

  31. Jafari A, Ganjkhanlou Y, Kazemzad M, Ghorbani H (2012) Effect of surfactants on the size, color, photoluminescence and resistivity of indium tin oxide nano-particles prepared by co-precipitation method. Surf rev letter 19:1250054-1–1250054-6

    Google Scholar 

  32. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion and cation-doping of titanium dioxide in second-generation photocatalysts. J Phys Chem B 110:24287–24293

    Article  CAS  Google Scholar 

  33. Fang JX, Lu D (1980) Solid states physics. Shanghai Technology and Science Press, Shanghai

    Google Scholar 

  34. Monjoy S, Suchitra S (2004) A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO2 thin films. Mater Chem Phys 83:169–177

    Article  Google Scholar 

  35. Mital GS, Manoj T (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639–1657

    Article  Google Scholar 

  36. Vasanthkumar CVR, Mansingh A (1990) Seventh IEEE international symposium on application of ferroelectrics. IEEE, New York, pp 713–716

    Google Scholar 

  37. Cheng Z, Liu T, Yang C, Gan H, Zhang F, Chen J (2012) Study on the electronic structures of the reduced anatase TiO2 by the first-principle calculation. J Phys Chem Solids 73:302–307

    Article  CAS  Google Scholar 

  38. Zheng L, Xu M, Xu T (2000) TiO2−x thin films as oxygen sensor. Sens Actuators B 66:28–30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azarmidokht Hosseinnia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghorashi, M.S., Hosseinnia, A., Hessari, F.A. et al. The effect of heat treatment in the reducing atmosphere on the physical properties of TiO2 thin films prepared by sol–gel method. J Sol-Gel Sci Technol 67, 236–243 (2013). https://doi.org/10.1007/s10971-013-3069-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3069-7

Keywords

Navigation