Skip to main content
Log in

Enhancement of the power conversion efficiency for inverted polymer solar cells due to an embedded CuxO interlayer formed by using Cu(I) acetate and Cu(II) acetate

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Structural, optical, and photovoltaic properties of copper-oxide (CuxO) thin films formed by using a sol–gel method were investigated. X-ray diffraction patterns showed that the CuxO films prepared utilizing Cu(I) acetate or Cu(II) acetate and annealed under ambient atmosphere at various temperatures were polycrystalline with two phases, Cu2O and Cu64O. Transmittance spectra showed that the energy band gaps of the CuxO thin films formed by using Cu(II) acetate were smaller than those formed by using Cu(I) acetate. Current–voltage results showed that the power conversion efficiencies of the inverted polymer solar cells utilizing the CuxO interlayer formed by using Cu(II) acetate were better than those utilizing the CuxO interlayer formed by using Cu(I) acetate due to the multiple band gaps of the Cu(II) acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Adv Funct Mater 11:15–26

    Article  CAS  Google Scholar 

  2. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789–1791

    Article  CAS  Google Scholar 

  3. Krebs FC (2009) Org Electron 10:761–768

    Article  CAS  Google Scholar 

  4. Jia Y, Yang L, Qin W, Yin S, Zhang F, Wei J (2013) Renew Energy 50:565–569

    Article  CAS  Google Scholar 

  5. Glatthaar M, Niggemann M, Zimmermann B, Lewer P, Riede M, Hinsch A, Luther J (2005) Thin Solid Films 491:298–300

    Article  CAS  Google Scholar 

  6. Hau SK, Yip HL, Jen AKY (2010) Polymer Rev 50:474–510

    Article  CAS  Google Scholar 

  7. Chen LM, Hong Z, Li G, Yang Y (2009) Adv Mater 21:1434–1449

    Article  CAS  Google Scholar 

  8. White MS, Olson DC, Shaheen SE, Kopidakis N, Ginley DS (2006) Appl Phys Lett 89:143517-1–143517-3

    Google Scholar 

  9. Sekine N, Chou CH, Kwan WL, Yang Y (2009) Org Electron 10:1473–1477

    Article  CAS  Google Scholar 

  10. Huang JS, Chou CY, Liu MY, Tsai KH, Lin WH, Lin CF (2009) Org Electron 10:1060–1065

    Article  CAS  Google Scholar 

  11. Liao HH, Chen LM, Xu Z, Li G, Yang Y (2008) Appl Phys Lett 92:173303-1–173303-3

    Google Scholar 

  12. Han S, Shin WS, Seo M, Gupta D, Moon SJ, Yoo S (2009) Org Electron 10:791–797

    Article  CAS  Google Scholar 

  13. Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ (2008) Proc Natl Acad Sci USA 105:2783–2787

    Article  CAS  Google Scholar 

  14. Kyaw AKK, Sun XW, Jiang CY, Lo GQ, Zhao DW, Kwong DL (2008) Appl Phys Lett 93:221107-1–221107-3

    Article  Google Scholar 

  15. Oku T, Motoyoshi R, Fujimoto K, Akiyama T, Jeyadevan B, Cuya J (2011) J Phys Chem Solids 72:1206–1211

    Article  CAS  Google Scholar 

  16. Lin MY, Lee CY, Shiu SC, Wang IJ, Sun JY, Wu WH, Lin YH, Huang JS, Lin CF (2010) Org Electron 11:1828–1834

    Article  CAS  Google Scholar 

  17. Hoa ND, An SY, Dung NQ, Quy NV, Kim D (2010) Sensor Actuat B-Chem 146:239–244

    Article  Google Scholar 

  18. Markworth PR, Liu X, Dai JY, Fan W, Marks TJ, Chang RPH (2001) J Mater Res 16:2408–2414

    Article  CAS  Google Scholar 

  19. Golden TD, Shumsky MG, Zhou Y, VanderWerf RA, Leeuwen RAV, Switzer JA (1996) Chem Mater 8:2499–2504

    Article  CAS  Google Scholar 

  20. Ozer N, Tepehan F (1993) Sol Energy Mater Sol Cells 30:13–26

    Article  CAS  Google Scholar 

  21. Ray SC (2001) Sol Energy Mater Sol Cells 68:307–312

    Article  CAS  Google Scholar 

  22. Kosugi T, Kaneko S (1998) J Am Ceram Soc 81:3117–3124

    Article  CAS  Google Scholar 

  23. Schlom DG, Chen LQ, Pan X, Schmehl A, Zurbuchen MA (2008) J Am Ceram Soc 91:2429–2454

    Article  CAS  Google Scholar 

  24. Lin HH, Wang CY, Shih HC, Chen JM, Hsieh CT (2007) J Appl Phys 95:5889–5895

    Article  Google Scholar 

  25. Ghosh S, Avasthi DK, Shah P, Ganesan V, Gupta A, Sarangi D, Bhattacharya R, Assmann W (2000) Vacuum 57:377–385

    Article  CAS  Google Scholar 

  26. Shinde SL, Nanda KK (2012) RSC Advances 2:3647–3650

    Article  CAS  Google Scholar 

  27. Guan R, Hashimoto H, Kuo KH (1984) Acta Crystallogr Sect B-Struct Sci 40:560–566

    Article  Google Scholar 

  28. Guan R, Kuo KH, Hashimoto H (1984) Proceedings of the 8th European Congress on Electron Microscopy (Budapest) 1173

  29. Rafea MA, Roushdy N (2009) J Phys D Appl Phys 42:015413-1–015413-6

    Google Scholar 

  30. Green MA (2001) Prog Photovoltaics 9:137–144

    Article  CAS  Google Scholar 

  31. Zhang JP, Zhang LD, Zhu LQ, Zhang Y, Liu M, Wang XJ, He G (2007) J Appl Phys 102:114903-1–114903-7

    Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0025491).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Whan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Kim, D.H. & Kim, T.W. Enhancement of the power conversion efficiency for inverted polymer solar cells due to an embedded CuxO interlayer formed by using Cu(I) acetate and Cu(II) acetate. J Sol-Gel Sci Technol 67, 105–111 (2013). https://doi.org/10.1007/s10971-013-3055-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3055-0

Keywords

Navigation