Skip to main content
Log in

Characterization and enhanced photocatalytic performance of nanocrystalline Ni-substituted Zn ferrites synthesized by DEA-assisted sol–gel auto-combustion method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocrystalline Ni-substituted Zn ferrites with compositions of NixZn1−xFe2O4 (x = 0–1.0) were synthesized by sol–gel auto-combustion method using metal nitrate as the reactants. Diethanolamine was selected as the fuel instead of conventional fuels such as urea, citric acid, tartaric acid or glycine. Characterization of after-calcined ferrite samples were conducted in terms of crystal structure, molecular vibrations, morphology and magnetic properties through X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope and vibrating sample magnetometer analysis, respectively. The photocatalytic activities of these ferrites were studied in term of degradation of Rhodamine B under daylight-irradiation. The corresponding results indicate that nickel loading content has significant effect on physical, magnetic, optical and photocatalytic properties of the ferrite. Comparing to the undoped Zn ferrite, Ni0.6Zn0.4Fe2O4 shows the enhancement in photocatalytic activity accompanying the degradation of Rhodamine B aqueous solution up to 77 % within 4 h. The result suggests the feasibility of this material as potential sunlight-activated photocatalyst in wastewater treatment and environment cleaning applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Goldman A (2006) Crystal structure of ferrites: modern ferrite technology, 2nd edn. Springer Science + Business Media, Inc., New York

    Google Scholar 

  2. Moulson AJ, Herbert JM (2003) Magnetic ceramics: electroceramics, 2nd edn. Wiley, West Sussex

    Book  Google Scholar 

  3. Pawar DK, Pawar SM, Patil PS, Kolekar SS (2011) Synthesis of nanocrystalline nickel–zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method. J Alloy Compd 509:3587–3591

    Article  CAS  Google Scholar 

  4. Azadmanjiri J (2008) Structural and electromagnetic properties of Ni–Zn ferrites prepared by sol–gel combustion method. Mater Chem Phys 109:109–112

    Article  CAS  Google Scholar 

  5. Praveena K, Sadhana K, Bharadwaj S, Murthy SR (2009) Development of nanocrystalline Mn–Zn ferrites for high frequency transformer applications. J Magn Magn Mater 321:2433–2437

    Article  CAS  Google Scholar 

  6. Li L, Peng L, Li Y, Zhu X (2012) Structure and magnetic properties of Co-substituted NiZn ferrite thin films synthesized by the sol–gel process. J Magn Magn Mater 324:60–62

    Article  CAS  Google Scholar 

  7. Fan G, Gu Z, Yang L, Li F (2009) Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique. Chem Eng J 155:534–541

    Article  CAS  Google Scholar 

  8. Jalaly M, Enayati MH, Karimzadeh F, Kameli P (2009) Mechanosynthesis of nanostructured magnetic Ni–Zn ferrite. Powder Technol 193:150–153

    Article  CAS  Google Scholar 

  9. Kumar A, Annveer M, Arora MS, Yadav RP (2010) Pant, Induced size effect on Ni doped nickel zinc ferrite nanoparticles. Phys Proc 9:20–23

    Article  CAS  Google Scholar 

  10. Petzold J (2003) Applications of nanocrystalline softmagnetic materials for modern electronic devices. Scripta Mater 48:895–901

    Article  CAS  Google Scholar 

  11. Li L (2011) Glycol-assisted autocombustion synthesis of spinel ferrite CoFe2O4 nanoparticles: magnetic and electrochemical performances. J Sol–Gel Sci Technol 58:677–681

    Article  CAS  Google Scholar 

  12. Herzer G, Vazquez M, Knobel M, Zhukov A, Reininger T, Davies HA, Gro ssinger R, Sanchez JL (2005) Round table discussion: present and future applications of nanocrystalline magnetic materials. J Magn Magn Mater 294:252–266

    Article  CAS  Google Scholar 

  13. Peng CH, Hwang CC, Wan J, Tsai JS, Chen SY (2005) Microwave-absorbing characteristics for the composites of thermal-plastic polyurethane (TPU)-bonded NiZn-ferrites prepared by combustion synthesis method. Mater Sci Eng, B 117:27–36

    Article  Google Scholar 

  14. Aphesteguy JC, Jacobo SE, Schegoleva NN, Kurlyandskaya GV (2010) Characterization of nanosized spinel ferrite powders synthesized by coprecipitation and autocombustion method. J Alloy Compd 495:509–512

    Article  CAS  Google Scholar 

  15. Brown P, Hope-Weeks LJ (2009) The synthesis and characterization of zinc ferrite aerogels prepared by epoxide addition. J Sol–Gel Sci Technol 51:238–243

    Article  CAS  Google Scholar 

  16. Hou JG, Qu YF, Ma WB, Sun QC (2007) Effect of CuO–Bi2O3 on low temperature sintered MnZn-ferrite by sol–gel auto-combustion method. J Sol–Gel Sci Technol 44:15–20

    Article  CAS  Google Scholar 

  17. Ismail I, Hashim M, Matori KA, Alias R, Hassan J (2011) Milling time and BPR dependence on permeability and losses of Ni0.5Zn0.5Fe2O4 synthesized via mechanical alloying process. J Magn Magn Mater 323:1470–1476

    Article  CAS  Google Scholar 

  18. Wang HW, Kung SC (2004) Crystallization of nanosized Ni–Zn ferrite powders prepared by hydrothermal method. J Magn Magn Mater 270:230–236

    Article  CAS  Google Scholar 

  19. Prakash I, Nallamuthu N, Muralidharan P, Venkateswarlu M (2011) Manjusri Misra, Amar Mohanty, N. Satyanarayana, Preparation and characterization of nanocrystalline CoFe2O4 deposited on SiO2: in situ sol–gel process. J Sol–Gel Sci Technol 58:24–32

    Article  CAS  Google Scholar 

  20. Wang Z, Fei W, Qian H, Jin M, Shen H, Jin M, Xu J, Zhang W, Bai Q (2012) Structure and magnetic properties of CoFe2O4 ferrites synthesized by sol–gel and microwave calcination. J Sol–Gel Sci Technol 61:289–295

    Article  CAS  Google Scholar 

  21. Misra RDK, Gubbala S, Kale A, Egelhoff WF Jr (2004) A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique. Mater Sci Eng, B 111:164–174

    Article  Google Scholar 

  22. Jadhav S, Shirsath SE, Toksha BG, Shengule DR, Jadhav KM (2008) Structural and dielectric properties of Ni–Zn ferrite nanoparticles prepared by co-precipitation method. J Optoelectron Adv Mater 10:2644–2648

    CAS  Google Scholar 

  23. Lee JH, Kim CK, Katoh S, Murakami R (2001) Microwave-hydrothermal versus conventional hydrothermal preparation of Ni- and Zn-ferrite powders. J Alloy Compd 325:276–280

    Article  CAS  Google Scholar 

  24. He X, Song G, Zhu J (2005) Non-stoichiometric NiZn ferrite by sol-gel processing. Mater Lett 59:1941–1944

    Article  CAS  Google Scholar 

  25. Geng Q, Zhao X, Gao X, Yang S, Liu G (2012) Low-temperature combustion synthesis of CuCr2O4 spinel powder for spectrally selective paints. J Sol–Gel Sci Technol 61:281–288

    Article  CAS  Google Scholar 

  26. Zhang J, Gao L (2004) Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate–citrate combustion method. Mater Res Bull 39:2249–2255

    Article  CAS  Google Scholar 

  27. Wu KH, Yu CH, Chang YC, Horng DN (2004) Effect of pH on the formation and combustion process of sol–gel auto-combustion derived NiZn ferrite/SiO2 composites. J Solid State Chem 177:4119–4125

    Article  CAS  Google Scholar 

  28. Tian C, Liu J, Cai J, Zeng Y (2008) Direct synthesis of La9.33Si6O26ultrafine powder via sol–gel self-combustion method. J Alloy Compd 458:378–382

    Article  CAS  Google Scholar 

  29. Zhong Z, Ye N, Wang H, Ma Z (2011) Low temperature combustion synthesis and performance of spherical 0.5Li2MnO3–LiNi0.5Mn0.5O2 cathode material for Li-ion batteries. Chem Eng J 175:579–584

    Article  CAS  Google Scholar 

  30. Sontakke S, Mohan C, Modak J, Madras G (2010) Visible light photocatalytic inactivation of E. coli with combustion synthesized TiO2. Chem Eng J. doi:10.1016/j.cej.2012.02.036

    Google Scholar 

  31. Chung SL, Wang CM (2011) A sol–gel combustion synthesis method for TiO2 powders with enhanced photocatalytic activity. J Sol–Gel Sci Technol 57:76–85

    Article  CAS  Google Scholar 

  32. Yue Z, Zhou J, Li L, Zhang H, Gui Z (2000) Synthesis of nanocrystalline NiCuZn ferrite powders by sol-gel auto-combustion method. J Magn Magn Mater 208:55–60

    Article  CAS  Google Scholar 

  33. Deka S, Joy PA (2006) Characterization of nanosized NiZn ferrite powders synthesized by an autocombustion method. Mater Chem Phys 100:98–101

    Article  CAS  Google Scholar 

  34. Slatineanu T, Iordan AR, Palamaru MN, Caltun OF, Gafton V, Leontie L (2011) Synthesis and characterization of nanocrystalline Zn ferrites substituted with Ni. Mater Res Bull 46:1455–1460

    Article  CAS  Google Scholar 

  35. International Agency for Research on Cancer (2000) Diethanolamine: IARC monographs on the evaluation of carcinogenic risk to humans, vol 77. IARC Press, Lyon

    Google Scholar 

  36. Cheremisinoff N (2003) Hazardous and toxic chemical profiles: industrial solvents handbook, 2nd edn. Marcel Dekker, Inc., New York

  37. Hwang CC, Tsai JS, Huang TH (2005) Combustion synthesis of Ni–Zn ferrite by using glycine and metal nitrates—investigations of precursor homogeneity, product reproducibility, and reaction mechanism. Mater Chem Phys 93:330–336

    Article  CAS  Google Scholar 

  38. Niasari MS, Davar F, Farhadi M (2009) Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol–gel method. J Sol–Gel Sci Technol 51:48–52

    Article  Google Scholar 

  39. Yuan T, Wei Z, Yuan J, Yan L, Liu Q, Wang J (2011) The microstructure and magnetic properties of Ni0.4Zn0.6Fe2O4 films prepared by spin-coating method. J Sol–Gel Sci Technol 58:501–506

    Article  CAS  Google Scholar 

  40. Atif M, Nadeem M, Grossinger R, Turtelli RS (2011) Studies on the magnetic, magnetostrictive and electrical properties of sol-gel synthesized Zn doped nickel ferrite. J Alloy Compd 509:5720–5724

    Article  CAS  Google Scholar 

  41. Barati MR (2009) Characterization and preparation of nanocrystalline MgCuZn ferrite powders synthesized by sol–gel auto-combustion method. J Sol–Gel Sci Technol 52:171–178

    Article  CAS  Google Scholar 

  42. Raghavender AT, Biliskov N, Skoko Z (2011) XRD and IR analysis of nanocrystalline Ni–Zn ferrite synthesized by the sol–gel method. Mater Lett 65:677–680

    Article  CAS  Google Scholar 

  43. Shirsath SE, Toksha BG, Kadam RH, Patange SM, Mane DR, Jangam GS, Ghasemi A (2010) Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion. J Phys Chem Solids 71:1669–1675

    Article  CAS  Google Scholar 

  44. Mohammed KA, Al-Rawas AD, Gismelseed AM, Sellai A, Widatallah HM, Yousif A, Elzain ME, Shongwe M (2012) Infrared and structural studies of Mg1−xZnxFe2O4 ferrites. Phys B 407:795–804

    Article  CAS  Google Scholar 

  45. Kambale RC, Shaikh PA, Harale NS, Bilur VA, Kolekar YD, Bhosale CH, Rajpure KY (2010) Structural and magnetic properties of Co1−xMnxFe2O4 (0 ≤ x ≤ 0.4) spinel ferrites synthesized by combustion route. J Alloy Compd 490:568–571

    Article  CAS  Google Scholar 

  46. Zhao DL, Lv Q, Shen ZM (2009) Fabrication and microwave absorbing properties of Ni–Zn spinel ferrites. J Alloy Compd 480:634–638

    Article  CAS  Google Scholar 

  47. Bobade DH, Rathod SM, Mane ML (2012) Sol–gel auto-combustion synthesis, structural and enhanced magnetic properties of Ni2+ substituted nanocrystalline Mg–Zn spinel ferrite. Phys B 407:3700–3704

    Article  CAS  Google Scholar 

  48. Bueno AR, Gregori ML, N′obrega MCS (2007) Effect of Mn substitution on the microstructure and magnetic properties of Ni0.50-xZn0.50-xMn2xFe2O4 ferrite prepared by the citrate–nitrate precursor method. Mater Chem Phys 105:229–233

    Article  CAS  Google Scholar 

  49. Callister WD (2007) Magnetic properties: Materials Science and Engineering: An Introduction, 7th edn. Wiley, New York

    Google Scholar 

  50. Cullity BD, Graham CD (2009) Ferrimagnetism: introduction to magnetic materials, 2nd edn. Wiley, New York

    Google Scholar 

  51. Laokul P, Maensiri S (2009) Aloe vera solution synthesis and magnetic properties of Ni–Cu–Zn ferrite nanopowders. J Optoelectron Adv Mater 11:857–862

    CAS  Google Scholar 

  52. Jahanbin T, Hashim M, Matori KA, Waje SB (2010) Influence of sintering temperature on the structural, magnetic and dielectric properties of Ni0.8Zn0.2Fe2O4 synthesized by co-precipitation route. J Alloy Compd 503(2010):111–117

    Article  CAS  Google Scholar 

  53. Xu X, Shen X, Zhu G, Jing L, Liu X, Chen K (2012) Magnetically recoverable Bi2WO6-Fe3O4 composite photocatalysts: fabrication and photocatalytic activity. Chem Eng J. doi:10.1016/j.cej.2012.06.104

    Google Scholar 

  54. Casbeer E, Sharma VK, Li XZ (2012) Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Technol 87:1–14

    Article  CAS  Google Scholar 

  55. Natarajan TS, Thomas M, Natarajan K, Bajaj HC, Tayade RJ (2011) Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chem Eng J 169:126–134

    Article  CAS  Google Scholar 

  56. Tehrani FS, Daadmehr V, Rezakhani AT, Akbarnejad RH, Gholipour S (2012) Structural, magnetic, and optical properties of zinc- and copper- substituted nickel ferrite nanocrystals. arXiv:1203.3924v1

Download references

Acknowledgments

This work has partially been supported by the Synchrotron Light Research Institute (Public Organization) with the PhD scholarship GS-55-D02 for T. Tangcharoen and the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network and Thai Microelectronics Center (TMEC), NSTDA, Ministry of Science and Technology, Thailand. Authors would like to thank KMITL Research Fund, Scientific Instruments Service Centre (SISC) of KMITL for FTIR measurement, Rajamangala University of Technology Thanyaburi (RMUTT) for XRD and SEM measurement, Thai Microelectronics Center (TMEC) for FE-SEM measurement and Department of Physics, Kasetsart University (KU) for VSM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wisanu Pecharapa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tangcharoen, T., Ruangphanit, A., Klysubun, W. et al. Characterization and enhanced photocatalytic performance of nanocrystalline Ni-substituted Zn ferrites synthesized by DEA-assisted sol–gel auto-combustion method. J Sol-Gel Sci Technol 66, 387–398 (2013). https://doi.org/10.1007/s10971-013-3021-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3021-x

Keywords

Navigation