Skip to main content
Log in

Nanoscale composite materials in the system SiO2–TiO2

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

An Erratum to this article was published on 03 December 2013

Abstract

Nanoscale composite materials based on the SiO2–TiO2 system were prepared in the form of co-precipitated composites and core SiO2–shell TiO2 composites, with specific surface area 150–650 m2/g and sorption volumes 0.1–1.0 cm3/g. It is shown that variation of phase composition and morphology permits to change their structural-adsorption properties and nanocrystallites size after thermal treatment. It is discovered that co-precipitated composite materials differ from core SiO2–shell TiO2 composites by a component interaction degree. It determines the difference of the titan-containing component crystallization process and alteration of their structural-absorption properties after thermal treatment. The results of the tests of composites as photocatalysts for Rhodamine B decomposition reaction, as catalysts of Hantzsch and Biginelli reaction, and as fillers in electrorheological fluids are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. John Wiley and Sons, New York

  2. Anwar NS, Kassim A, Lim HN, Zakarva SA, Huang NM (2010) Sains Malays 39:261

    CAS  Google Scholar 

  3. Inagaki M, Nakazawa Y, Hirano M, Kobayashi Y, Toyoda M (2001) Int J Inorg Mat 3:809–813

    Article  CAS  Google Scholar 

  4. Yan H, Chunwei Y (2005) J Cryst Gr 274:563–573

    Article  Google Scholar 

  5. Aguado J, Grieken R, Lopez-Munoz M-J, Marugan J (2006) Appl catalys 312:202–212

    Article  CAS  Google Scholar 

  6. Macwan DP, Dave Pr N, Chaturvedi Sh (2011) J Mat Sci 46:3669–3686

    Article  CAS  Google Scholar 

  7. Tyukova IS, Suvorova AI, Okuneva AI, Shishkin EI (2010) Polym Sci 52:564–570

    Google Scholar 

  8. Kholdeeva OA, Trukhan NN (2006) Rus Chem Rev 75:411–433

    Article  CAS  Google Scholar 

  9. Murashkevich AN, Lavickaya AS, Barannikova TI, Zharsky IM (2008) J. Appl. Spectr. 75:724–728

    Article  Google Scholar 

  10. Murashkevich AN, Alisienok OA, Zharsky IM (2011) Kin Cat 52:809–816

    Article  CAS  Google Scholar 

  11. Murashkevich AN, Alisienok OA, Lavitskaya AS, Zharsky IM (2010) Sviridov read 6:48–55

    Google Scholar 

  12. Murashkevich AN, Lavitskaya AS, Alisienok OA, Zharskii IM (2009) Inorg Mat 45:1146–1152

    Article  CAS  Google Scholar 

  13. Chen Sh, Liu H, Wang C et al (2012) Chem Ind Eng Progr 31:1052–1056

    CAS  Google Scholar 

  14. Chao X, Zili X, Qiujing Y, Baoyong X et al (2004) Mat Sci Ing 112:34–41

    Google Scholar 

  15. Ei-Toni AM, Yin S, Sato T (2006) J. Coll. Int. Sci. 300:123–130

    Article  Google Scholar 

  16. Hu Ch, Yuchao T, Zheng J et al (2003) Appl Cat 253:389–396

    Article  CAS  Google Scholar 

  17. Jun-ping M, Jin-sheng L, Guang-chuan L et al (2006) Trans. Nonferr. Met. Soc. Ch. 16:547–550

    Article  Google Scholar 

  18. Li G, Bai B, Zhao XS (2008) Ind Eng Chem Res 47:8228–8232

    Article  CAS  Google Scholar 

  19. Hu Sh, Li F, Fan Z (2012) Bull Korean Chem Soc 33:1895–1899

    Article  CAS  Google Scholar 

  20. Murashkevich AN, Alisienok OA, Zharskii IM (2009) Sviridov read 5:161–168

    Google Scholar 

  21. Koltsov SI, Tuz TV (1991) Int. Inst High Edu Chem Chem Tech 34:90–95

    CAS  Google Scholar 

  22. Wilhelm P, Dietmar S (2007) J Photochem Photobiol A: Chem 185:19–24

    Article  CAS  Google Scholar 

  23. Epling GA (2002) Chemosphere 46:561–566

    Article  CAS  Google Scholar 

  24. Tanaka K, Padermpole K, Higanaga T (2000) Wat Res 34:234–327

    Article  Google Scholar 

  25. Fedorova OV, Koryakova OV, Valova MS, Ovchinnikova IG, Titova YuA (2010) Kin Cat 51:566–573

    Article  CAS  Google Scholar 

  26. Fedorova OV, Valova MS, Titova YuA, Ovchinnikova IG, Grishakov AN (2011) Kin. Cat. 52:226–233

    Article  CAS  Google Scholar 

  27. Murashkevich AN, Alisienok OA, Zharsky IM (2012) Inorg Mat 48:1218–1312

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Belarusian Republican Foundation for Fundamental Research for financial support (grants X10P-027, X12P-071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Murashkevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murashkevich, A.N., Alisienok, O.A., Zharskiy, I.M. et al. Nanoscale composite materials in the system SiO2–TiO2 . J Sol-Gel Sci Technol 65, 367–373 (2013). https://doi.org/10.1007/s10971-012-2947-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2947-8

Keywords

Navigation