Skip to main content
Log in

Sol–gel synthesis and characterization of conducting polythiophene/tin phosphate nano tetrapod composite cation-exchanger and its application as Hg(II) selective membrane electrode

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nano tetrapod based on conducting polythiophene (PTh) and tin-phosphate (SnP) were synthesized by in situ chemical oxidative polymerization. The morphology of the resulting polythiophene tinphosphate composite was characterized by elemental analysis, fourier transform infrared spectroscopy, thermogravimetric analysis, powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The physico-chemical characterization carried out on the composite showed that SnP was modified by conducting PTh with an enhancement of various properties. On the basis of highest distribution coefficient values for Hg(II), the composite was also used for the preparation of Hg(II) selective membrane electrode. The electrode showed working concentration range of 1 × 10−1 to 1 × 10−7 with Nernstian slope of 29.29 mV per decade change in concentration and the electrode may be used for wide working pH range of 4–8 having quick response time about 23 s. The life of electrode is 4 months without any notable drift in potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12(7):1952–1958

    Article  CAS  Google Scholar 

  2. Ebbesen TW (1996) Carbon nanotubes. Phys Today 49(6):26–32

    Article  CAS  Google Scholar 

  3. Treay MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680

    Article  Google Scholar 

  4. Deheer WA, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270(5239):1179–1180

    Article  CAS  Google Scholar 

  5. Ruoff RS, Lorents DC, Chan B, Malhotra R, Subramoney S (1993) Single-crystal metals encapsulated in carbon nanoparticles. Science 259(5093):346–348

    Article  CAS  Google Scholar 

  6. Tomita M, Saito Y, Hayashi T (1993) Lac2 encapsulated in graphite nano-particle. Jpn J Appl Phys 32(2B):L280–L282

    Article  CAS  Google Scholar 

  7. Seraphin S, Zhou D, Jaio J, Withers JC, Loufty R (1993) Yttrium carbide in nanotubes. Nature 362(6420):503

    Article  Google Scholar 

  8. Saito Y, Yoshikawa T, Okuda M, Ohkohchi M, Ando Y, Kasuya A, Nishina Y (1993) Synthesis and electron-beam incision of carbon nanocapsules encaging yc2. Chem Phys Lett 209(1–2):72–76

    Article  CAS  Google Scholar 

  9. Rudodph AS, Calvert JM, Schoen PE (1988) In: Caber BP, Schnur JM, Chapman D (eds) Biotechnological applications of lipid microstructures. Plenum, New York

    Google Scholar 

  10. Wang C, Guo ZX, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29(11):1079–1141

    Article  Google Scholar 

  11. Shirakawa H (2002) The discovery of polyacetylene film: the dawning of an era of conducting polymers. Synth Met 125:3–10

    Article  CAS  Google Scholar 

  12. MacDiarmid AG (2002) A novel role for organic polymers. Synth Met 125:11–22

    Article  CAS  Google Scholar 

  13. Heeger AJ (2002) Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth Met 125:23–42

    Article  CAS  Google Scholar 

  14. Skotheim TA (ed) (1986) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  15. Skotheim TA, Elsenbaumer RL, Reynolds JR (eds) (1998) Handbook of Conducting Polymers, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  16. Waugaman M, Sannigrahi B, McGeady P, Khan IM (2003) Synthesis, characterization and biocompatibility studies of oligosiloxane modified polythiophenes. Eur Polym J 39(7):1405–1412

    Article  CAS  Google Scholar 

  17. Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T, Kamigaito O (1990) Synthesis and properties of nylon-6/clay hybrids. In Schaefer DW, Mark JE, (eds) Polymer based molecular composites. Symposium proceedings, vol 171. MRS, Pittsburgh, 45

  18. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35

    Article  CAS  Google Scholar 

  19. Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv Polym Sci 138:107–147

    Article  CAS  Google Scholar 

  20. LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1–2):11–29

    Article  CAS  Google Scholar 

  21. Vaia RA, Price G, Ruth PN, Nguyen HT, Lichtenhan J (1999) Polymer/layered silicate nanocomposites as high performance ablative materials. J Appl Clay Sci 15(1–2):67–92

    Article  CAS  Google Scholar 

  22. Biswas M, Ray S (2001) Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. Adv Polym Sci 115:167–221

    Article  Google Scholar 

  23. Giannelis EP (1998) Polymer-layered silicate nanocomposites: synthesis, properties and applications. Appl Organomet Chem 12(10–11):675–680

    Article  CAS  Google Scholar 

  24. Xu RU, Manias E, Snyder AJ, Runt J (2001) New biomedical poly(urethane urea)—Layered silicate nanocomposites. Macromolecules 34(2):337–339

    Article  CAS  Google Scholar 

  25. Bharadwaj RK (2001) Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34(26):9189–9192

    Article  CAS  Google Scholar 

  26. Messersmith PB, Giannelis EP (1995) Synthesis and barrier properties of poly(epsilon-caprolactone)-layered silicate nanocomposites. J Polym Sci, Part A: Polym Chem 33(7):1047–1057

    Article  CAS  Google Scholar 

  27. Kojima Y, Usuki A, Kawasumi M, Fukushima Y, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid. J Mater Res 8(5):1179–1184

    Article  Google Scholar 

  28. Gilman JW, Kashiwagi T, Lichtenhan JD (1997) Nanocomposites: a revolutionary new flame retardant approach. Sample J 33(4):40–46

    CAS  Google Scholar 

  29. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15(1–2):31–49

    Article  CAS  Google Scholar 

  30. Dabrowski F, Bras ML, Bourbigot S, Gilman JW, Kashiwagi T (1999) PA-6 montmorillonite nanocomposite in intumescent fire retarded EVA. Proceedings of the Eurofillers’ 99. Lyon-Villeurbanne, France, 6–9 September 1999

  31. Bourbigot S, LeBras M, Dabrowski F, Gilman JW, Kashiwagi T (2000) PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater 24(4):201–208

    Article  CAS  Google Scholar 

  32. Gilman JW, Jackson CL, Morgan AB, Harris JR, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips SH (2000) Flammability properties of polymer—Layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater 12(7):1866–1873

    Article  CAS  Google Scholar 

  33. Clearfield A (2000) Inorganic ion exchangers, past, present, and future. Solv Extrn Ion Exch 18(4):655–678

    Article  CAS  Google Scholar 

  34. Niwas R, Khan AA, Varshney KG (1999) Synthesis and ion exchange behaviour of polyaniline Sn(IV) arsenophosphate: a polymeric inorganic ion exchanger. Colloids Surf A Physicochem Asp 150(1–3):7–14

    Article  CAS  Google Scholar 

  35. Niwas R, Khan AA, Varshney KG (1998) Preparation and properties of styrene supported zirconium(IV) tungstophosphate: a mercury(II) selective inorganic-organic ion exchanger. Indian J Chem 37(5):469–472

    Google Scholar 

  36. Khan AA, Alam MM (2003) Synthesis, characterization and analytical applications of a new and novel ‘organic-inorganic’ composite material as a cation exchanger and Cd(II) ion-selective membrane electrode: polyaniline Sn(IV) tungstoarsenate. React Funct Polym 55(3):277–290

    Article  CAS  Google Scholar 

  37. Varshney KG, Tyal N, Khan AA, Niwas R (2001) Synthesis, characterization and analytical applications of lead (II) selective polyacrylonitrile thorium (IV) phosphate: a novel fibrous ion exchanger. Colloids Surf A: Physicochem Eng Asp 181(1–3):123–129

    Article  CAS  Google Scholar 

  38. Varshney KG, Tayal N, Gupta U (1998) Acrylonitrile based cerium (IV) phosphate as a new mercury selective fibrous ion-exchanger—Synthesis, characterization and analytical applications. Colloids Surf A: Physicochem Eng Asp 145(1–3):71–81

    Article  CAS  Google Scholar 

  39. Zhang B, Poojary DM, Clearfield A, Peng G (1996) Synthesis, characterization, and amine intercalation behavior of zirconium N-(phosphonomethyl)iminodiacetic acid layered compounds. Chem Mater 8(6):1333–1340

    Article  CAS  Google Scholar 

  40. Alberti G, Casciola M, Dionigi C, Vivani R (1995) Proceedings of international conference on ion-exchange, ICIE’95. Takamtsu, Japan

    Google Scholar 

  41. Khan AA, Khan A, Inamuddin (2007) Preparation and characterization of a new organic-inorganic nano-composite poly-o-toluidine Th(IV) phosphate: its analytical applications as cation-exchanger and in making ion-selective electrode. Talanta 72(2):699–710

    Article  CAS  Google Scholar 

  42. Srivastava SK, Jain AK, Agarwal S, Singh RP (1978) Studies with inorganic ion-exchange membranes. Talanta 25(3):157–159

    Article  CAS  Google Scholar 

  43. Amarchand S, Menon SK, Agarwal YK (1998) Water hardness determination using Mg(II) ion selective electrode. Indian J Chem Technol 5(2):99–103

    CAS  Google Scholar 

  44. Duval C (1963) Inorganic thermogravimetric analysis. Elsevier, Amsterdam p315

    Google Scholar 

  45. Wang YD, Rubner MF (1990) stability studies of the electrical-conductivity of various poly(3-alkylthiophenes). Synth Met 39(2):153–175

    Article  CAS  Google Scholar 

  46. Wang JX (1996) Mechanism of mediation of the electrochemical oxidation of K4Fe(CN)(6) at poly-[tris(3-{omega-[4-(2,2′-bipyridyl)]alkyl}-thiophene)iron(II)]-film modified electrodes in aqueous solutions. Electrochim Acta 41(16):2563–2569

    Article  CAS  Google Scholar 

  47. Roncoli J (1992) Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem Rev 92(4):711–738

    Article  Google Scholar 

  48. Toshima N, Hara S (1995) Direct synthesis of conducting polymers from simple monomers. Prog Polym Sci 20(1):155–183

    Article  CAS  Google Scholar 

  49. Udum YA, Pekmez K, Yildiz A (2005) Electrochemical preparation of a soluble conducting aniline-thiophene copolymer. Eur Polym J 41(5):1136–1142

    Article  CAS  Google Scholar 

  50. Amini MK, Mazloum M, Ensaf AA (1999) 10th working conference on applied surface analysis (AOFA 10) location: kaiserslautern, Germany, Date: SEP 06–10, (1998) Fresenius J Anal Chem 364(8):690–693

  51. Demirel A, Dogan E, Canel E, Memon S (2004) Hydrogen ion-selective poly(vinyl chloride) membrane electrode based on a p-tert-butylcalix[4]arene-oxacrown-4. Talanta 62(1):123–129

    Article  CAS  Google Scholar 

  52. IUPAC Analytical Chemistry Division, Commission on Analytical Nomenclature (1994) Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure Appl Chem 66:2527–2536

    Google Scholar 

  53. Jumal J, Yamin BM, Ahmad M, Heng LY (2012) Mercury Ion-Selective Electrode With Self-plasticizing Poly(nbuthylacrylate) Membrane Based On 1,2-Bis-(N-benzoylthioureido)cyclohexane As Ionophore. APCBEE Procedia 3:116–123

    Article  Google Scholar 

  54. Gupta VK, Singh AK, Khayat MA, Gupta B (2007) Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Anal Chim Acta 590:81–90

    Article  CAS  Google Scholar 

  55. Mazloum M, Amini MK, Baltork IM (2002) Mercury selective membrane electrodes using 2-mercaptobenzimidazole, 2-mercaptobenzothiazole and hexathiacyclooctadecane carriers. Sens Actuators, B 63:80–85

    Article  Google Scholar 

  56. Lu J, Tong X, He X (2003) A mercury ion-selective electrode based on a calixarene derivative containing the thiazole azo group. J Electroanal Chem 540:111–117

    Article  CAS  Google Scholar 

  57. Mahajana RK, Puria RK, Marwahab A, Kaur I (2009) Mohinder Pal Mahajanb, Highly selective potentiometric determination of mercury(II) ions using 1-furan-2-yl-4-(4-nitrophenyl)-2-phenyl-5H-imidazole-3-oxide based membrane electrodes. J Hazard Mater 167:237–243

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the Centre of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, KSA to carry out experiments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A., Asiri, A.M., Khan, A.A.P. et al. Sol–gel synthesis and characterization of conducting polythiophene/tin phosphate nano tetrapod composite cation-exchanger and its application as Hg(II) selective membrane electrode. J Sol-Gel Sci Technol 65, 160–169 (2013). https://doi.org/10.1007/s10971-012-2920-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2920-6

Keywords

Navigation