Skip to main content
Log in

Non-hydrolytic synthesis of titanosilicate xerogels by acetamide elimination and their use as epoxidation catalysts

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Novel non-hydrolytic syntheses of titanosilicate xerogels by polycondensation of silicon acetate, Si(OAc)4, with titanium (IV) dimethylamide or diethylamide, Ti(NR2)4 (R = Me, Et), are presented. The reactions are based on acetamide elimination and yield gels with a high content of Si–O−Ti bonds in comparison with the ester elimination route. Although a ligand exchange was observed, it was interestingly not followed by homo-condensation and during the synthesis the phase separation to SiO2 and TiO2 was avoided. The degree of condensation reached up to 68 %. The xerogels prepared for a comparison by ester elimination from Si(OAc)4 and titanium (IV) isopropoxide featured a significantly lower content of the Si–O–Ti bonds. The initial tests in the epoxidation of cyclohexene by cumyl hydroperoxide (CHP) indicated a high selectivity and moderate activity of the xerogels. The catalytic properties were significantly improved by combining non-hydrolytic and hydrolytic methods yielding mesoporous and homogeneous Si/Ti mixed oxides. The catalysts prepared by these methods provided a complete epoxidation of cyclohexene in 2 h at 65 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Debecker DP, Mutin PH (2012) Non-hydrolytic sol–gel routes to heterogeneous catalysts. Chem Soc Rev 41:3624–3650

    Article  CAS  Google Scholar 

  2. Vioux A (1997) Nonhydrolytic sol-gel routes to oxides. Chem Mater 9(11):2292–2299

    Article  CAS  Google Scholar 

  3. Hay JN, Raval HM (2001) Synthesis of organic-inorganic hybrids via the non-hydrolytic sol-gel process. Chem Mater 13(10):3396–3403

    Article  CAS  Google Scholar 

  4. Clavel G, Rauwel E, Willinger M-G, Pinna N (2009) Non-aqueous sol-gel routes applied to atomic layer deposition of oxides. J Mater Chem 19:454–462

    Article  CAS  Google Scholar 

  5. Mutin PH, Vioux A (2009) Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure. Chem Mater 21(4):582–596

    Article  CAS  Google Scholar 

  6. Niederberger M (2007) Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc Chem Res 40(9):793–800

    Article  CAS  Google Scholar 

  7. Davis RJ, Liu Z (1997) Titania-silica: a model binary oxide catalyst system. Chem Mater 9(11):2311–2324

    Article  CAS  Google Scholar 

  8. Fujiwara M, Wessel H, Hyung-Suh P, Roesky HW (2002) Formation of titanium tert-butylperoxo intermediate from cubic silicon-titanium complex with tert-butyl hydroperoxide and its reactivity for olefin epoxidation. Tetrahedron 58(2):239–243

    Article  CAS  Google Scholar 

  9. Dusi M, Mallat T, Baiker A (2000) Epoxidation of functionalized olefins over solid catalysts. Catal Rev Sci Eng 42(1–2):213–278

    Article  CAS  Google Scholar 

  10. Lorret O, Lafond V, Mutin PH, Vioux A (2006) One-step synthesis of mesoporous hybrid titania-silica xerogels for the epoxidation of alkenes. Chem Mater 18(20):4707–4709

    Article  CAS  Google Scholar 

  11. Müller CA, Deck R, Mallat T, Baiker A (2000) Hydrophobic titania-silica aerogels: epoxidation of cyclic compounds. Top Catal 11(1–4):369–378

    Article  Google Scholar 

  12. Notari B, Willey RJ, Panizza M, Busca G (2006) Which sites are the active sites in TiO2-SiO2 mixed oxides? Catal Today 116(2):99–110

    Article  CAS  Google Scholar 

  13. Lafond V, Mutin PH, Vioux A (2002) Non-hydrolytic sol-gel routes based on alkylhalide elimination: toward better mixed oxide catalyst and new supports application to the preparation of a SiO2-TiO2 epoxidation catalyst. J Mol Catal A: Chem 182–183:81–88

    Article  Google Scholar 

  14. Lafond V, Mutin PH, Vioux A (2004) Control of the texture of titania-silica mixed oxides prepared by nonhydrolytic sol-gel. Chem Mater 16(25):5380–5386

    Article  CAS  Google Scholar 

  15. Andrianainarivelo M, Corriu R, Leclerq D, Mutin PH, Vioux A (1996) Mixed oxides SiO2-ZrO2 and SiO2-TiO2 by a non-hydrolytic sol-gel route. J Mater Chem 6(10):1665–1671

    Article  CAS  Google Scholar 

  16. Cojocariu AM, Mutin PH, Dumitriu E, Fajula F, Vioux A, Hulea V (2010) Mild oxidation of bulky organic compounds with hydrogen peroxide over mesoporous TiO2-SiO2 xerogels prepared by non-hydrolytic sol-gel. Appl Catal B 97:407–413

    Article  CAS  Google Scholar 

  17. Cojocariu AM, Mutin PH, Dumitriu E, Aboulaich A, Vioux A, Fajula F, Hulea V (2010) Non-hydrolytic SiO2-TiO2 mesoporous xerogels-efficient catalysts for the mild oxidation of sulfur organic compounds with hydrogen peroxide. Catal Today 157:270–274

    Article  CAS  Google Scholar 

  18. Henderson GS, Fleet ME (1997) The structure of titanium silicate glasses investigated by Si K-edge X-ray absorption spectroscopy. J Non-Cryst Solids 211(3):214–221

    Article  CAS  Google Scholar 

  19. Goubeau J, Mundiel RZ (1953) Uber das trichlorsiliciumacetat. Z Anorg Allg Chem 272(1–4):313–326

    Article  CAS  Google Scholar 

  20. Gueba-Neyroud T, Tumanskii B, Botoshansky M, Eisen MS (2007) Synthesis, characterization and catalytic activity of the complex titanium bis(dimethylmalonate)-bis(diethylamido) in the polymerization of propylene. J Organomet Chem 692(5):927–939

    Article  Google Scholar 

  21. Iwasaki M, Yasumori A, Shibata S, Yamane M (1994) Preparation of high homogeneity BaO-TiO2-SiO2 gel. J Sol-Gel Sci Technol 2:387–391

    Article  CAS  Google Scholar 

  22. Jansen M, Guenther E (1995) Oxide gels and ceramics prepared by a nonhydrolytic sol-gel process. Chem Mater 7(11):2110–2114

    Article  CAS  Google Scholar 

  23. Coltrain BK, Kelts LV, Armstrong NJ, Salva JM (1994) Silicon tetraacetate as a sol-gel precursor. J Sol-Gel Sci Technol 3:83–90

    Article  CAS  Google Scholar 

  24. Innocenzi P (2003) Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Sol 316(2–3):309–319

    Article  CAS  Google Scholar 

  25. Deacon GB, Phillips RJ (1980) Relationship between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev 33(3):227–250

    Article  CAS  Google Scholar 

  26. Alcock NW, Tracy VM, Waddington TC (1976) Acetates and acetato-complexes. 2. Spectroscopic studies. J Chem Soc Dalton 21:2243–2246

    Article  Google Scholar 

  27. Rotzinger FP, Kesselman-Truttmann JM, Hug SJ, Shklover V, Graetzel M (2004) Structure and vibrational spectrum of formate and acetate adsorbed from aqueous solution onto the TiO2 rutile (110) surface. J Phys Chem B 108(16):5004–5017

    Article  CAS  Google Scholar 

  28. Dutoit DCM, Schneider M, Baiker A (1995) Titania-silica mixed oxides. 1. Influence of sol-gel and drying conditions on structural properties. J Catal 153(1):165–176

    Article  CAS  Google Scholar 

  29. Smith DY, Black CE, Homes CC, Shiles E (2007) Optical properties of TiO2-SiO2 glass over a wide spectral range. Phys Stat Sol 4(3):838–842

    Article  CAS  Google Scholar 

  30. Frot T, Cochet S, Laurent G, Sassoye C, Popall M, Sanchez C, Rozes L (2010) Ti8O8(OOCR)16, a new family of titanium–oxo clusters: potential NBUs for reticular chemistry. Eur J Inorg Chem 36:5650–5659

    Article  Google Scholar 

  31. Birnie DP III, Bendzko NJ (1999) 1H and 13C NMR observation of the reaction of acetic acid with titanium isopropoxide. Mater Chem Phys 59:26–35

    Article  CAS  Google Scholar 

  32. Balmer ML, Bunker BC, Wang LQ, Peden CHF, Su Y (1997) Solid-state 29Si MAS NMR study of titanosilicates. J Phys Chem B 101(45):9170–9179

    Article  CAS  Google Scholar 

  33. Labouriau A, Higley TJ, Earl WL (1998) Chemical shift prediction in the 29Si MAS NMR of titanosilicates. J Phys Chem B 102(16):2897–2904

    Article  CAS  Google Scholar 

  34. Zibrowius B, Weidenthaler C, Schmidt W (2003) Sorbate-induced changes in the framework of the titanosilicate ETS-10 as detected by 29Si MAS NMR spectroscopy and X-ray powder diffraction. Phys Chem Chem Phys 5(4):773–777

    Article  CAS  Google Scholar 

  35. Eimer GA, Casuscelli SG, Ghione GE, Crivello ME, Herrero ER (2006) Synthesis, characterization and selective oxidation properties of Ti-containing mesoporous catalysts. Appl Catal A General 298:32–242

    Article  Google Scholar 

  36. Liu Z, Davis RJ (1994) Investigation of the structure of microporous Ti-Si mixed oxides by X-ray, UV reflectance, FT-Raman, and FT-IR spectroscopies. J Phys Chem 98:1253–1261

    Article  CAS  Google Scholar 

  37. Murugavel R, Davis P, Shete VS (2003) Reactivity studies, structural characterization, and thermolysis of cubic titanosiloxanes: precursors to titanosilicate materials which catalyze olefin epoxidation. Inorg Chem 42(15):4696–4706

    Article  CAS  Google Scholar 

  38. Mathur S, Veith M, Shen H, Hüfner S, Jilavi MH (2002) Structural and optical properties of NdAlO3 nanocrystals embedded in an Al2O3 matrix. Chem Mater 14(2):568–582

    Article  CAS  Google Scholar 

  39. Coles MP, Lugmair CG, Terry KW, Tilley TD (2000) Titania-silica materials from the molecular precursor Ti[OSi(OtBu)3]4: selective epoxidation catalysts. Chem Mater 12(1):122–131

    Article  CAS  Google Scholar 

  40. Hutter R, Mallat T, Baiker A (1995) Titania-silica mixed oxides. 2. Catalytic behavior in olefin epoxidation. J Catal 153(1):177–189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the University of Cologne and the project CEITEC—Central European Institute of Technology (CZ.1.05/1.1.00/02.0068) for the financial assistance. The ERASMUS program is acknowledged for enabling the stay of A. S. in Cologne. Authors thank Dr. Z. Moravec for measuring N2 adsorption–desorption isotherms, L. Xiao, Dr. S. Stucky, Dr. V. Vavra, and Dr. P. Bezdicka for recording the XRD data, O. Arslan and Dr. Z. Moravec for measuring thermal analysis, and J. Abbott for assistance with the solid state NMR experiments. The helpful discussions with Dr. W. Tyrra, Dr. A. P. Singh and Dr. S. Stucky are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiri Pinkas or Sanjay Mathur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Styskalik, A., Skoda, D., Pinkas, J. et al. Non-hydrolytic synthesis of titanosilicate xerogels by acetamide elimination and their use as epoxidation catalysts. J Sol-Gel Sci Technol 63, 463–472 (2012). https://doi.org/10.1007/s10971-012-2808-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2808-5

Keywords

Navigation