Skip to main content
Log in

Hydrophobic siloxane paper coatings: the effect of increasing methyl substitution

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Paper is an organic material widely used in cultural heritage and mainly composed of cellulose mixed with lignin, hemicellulose and small amounts of additives. This paper deals with siloxane coatings on pure cellulose paper, applied by sol–gel dipping in sols prepared with different siloxane precursors (tetraethoxysilane, methyl triethoxysilane, dimethyl diethoxysilane, trimethyl monoethoxysilane). The coated samples were characterized using various techniques (Fourier Transform Infrared Spectroscopy FT-IR, Nuclear Magnetic Resonance NMR and Scanning Electron Microscopy and Energy Dispersive Spectroscopy SEM–EDS), measuring their mechanical properties, flame resistance and contact angles, and a colorimetric test. The coated samples’ behavior was more hydrophobic the higher the methyl number of siloxane precursor, regardless of the coating’s thickness. Increasing the thickness improved the mechanical and thermal properties. The thickest coatings were obtained using a double coating process and a basic catalyst for the hydrolysis step, but this latter condition facilitated the formation of surface agglomerates, which make the paper too stiff and yellow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nicolas DD (ed) (1973) Wood deterioration and its prevention by preservative treatments, vol 1. Syracuse University Press, Syracuse, NY

    Google Scholar 

  2. Xu F, Ding H, Tejirian A (2009) Enzyme Microb Technol 45:203–209

    Article  CAS  Google Scholar 

  3. Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Ben Salah A, Gandini A (2004) Int J Adh Adhes 24:43–54

    Article  CAS  Google Scholar 

  4. Kandelbauer A, Petek P, Medved S, Pizzi A, Teischinger A (2010) Euro J Wood Prod 68:63–75

    Article  CAS  Google Scholar 

  5. Fir M, Vince J, Vuk AS, Vilcnik A, Jovanovski V, Mali G, Orel B, Simoncic B (2007) Acta Chim Slov 54:144–148

    CAS  Google Scholar 

  6. Klemenčič D, Simončič B, Tomašič B, Orel B (2010) Carbohydr Polym 80:426–435

    Article  Google Scholar 

  7. Maneerung T, Tokura S, Rujiravanit R (2008) Carbohydr Polym 72:43–51

    Article  CAS  Google Scholar 

  8. Son Y-A, Kim B-S, Ravikumar K, Lee S-G (2006) Euro Polym J 42:3059–3067

    Article  CAS  Google Scholar 

  9. Bhat NV, Seshadri DT, Nate MM, Gore AV (2006) J Appl Polym Sci 102:4690–4695

    Article  CAS  Google Scholar 

  10. Klibanov AM (2007) J Mater Chem 17:2479–2482

    Article  CAS  Google Scholar 

  11. Martin TP, Kooi SE, Chang SH, Sedransk KL, Gleason KK (2007) Biomaterials 28:909

    Article  CAS  Google Scholar 

  12. Mahltig B, Fiedler D, Böttcher H (2004) J Sol-Gel Sci Tech 32:219–222

    Article  CAS  Google Scholar 

  13. Haufe H, Thron A, Fiedler D, Mahltig B, Böttcher H (2005) Surf Coat Part B Coat Trans 88:55–60

    Article  CAS  Google Scholar 

  14. Hou A, Shi Y, Yu Y (2009) Carbohydr Polym 77:201–205

    Article  CAS  Google Scholar 

  15. Xie K, Yu Y, Shi Y (2009) Carbohydr Polym 78:799–805

    Article  CAS  Google Scholar 

  16. Sheen YC, Chang WH, Chen WC, Chang YH, Huang YC, Chang FC (2009) Mater Chem Phys 114:63–68

    Article  CAS  Google Scholar 

  17. Belleville P (2010) C R Chim 13:97–105

    Article  CAS  Google Scholar 

  18. Schmidt H (1988) J Non-Cryst Solids 100:51–64

    Article  CAS  Google Scholar 

  19. MacKenzie JD, Bescher E (2003) J Sol-Gel Sci Tech 27:7–14

    Article  CAS  Google Scholar 

  20. Guo Z, Liu W (2007) Plant Sci 172:1103–1112

    Article  CAS  Google Scholar 

  21. Huang SI, Shen YJ, Chen H (2009) Appl Surf Sci 255:7040–7046

    Article  CAS  Google Scholar 

  22. Hook RJ (1996) J Non-Cryst Solids 195:1–15

    Article  CAS  Google Scholar 

  23. Della Volpe C, Brugnara M, Maniglio D, Siboni S, Wangdu T (2006) Contact Angle Wettability Adhesion 4:79–99

    Google Scholar 

  24. Brugnara M, Della Volpe C, Maniglio D, Siboni S, Negri M, Gaeti N (2006) Contact Angle Wettability Adhesion 4:1–27

    Google Scholar 

  25. Atalla RH, VanderHart DL (1999) Solid State Nucl Magn Reson 15:1–19

    Article  CAS  Google Scholar 

  26. Girardi F, Maggini S, Della Volpe C, Cappelletto E, Mueller K, Siboni S, Di Maggio R (2011) Hybrid organic–inorganic materials on paper: surface and thermo-mechanical properties. J Sol-Gel Sci Tech. doi:10.1007/s10971-011-2563-z

  27. Wickholm K, Larsson PT, Iversen T (1998) Carbohydr Res 312:123–129

    Article  CAS  Google Scholar 

  28. Jung HY, Gupta RK, Oh EO, Kim YH, Whang CM (2005) J Non-Cryst Solids 351:372–379

    Article  CAS  Google Scholar 

  29. Kannangara D, Shen W (2006) Colloid Surf A Physicochem Eng Aspects 280:203–215

    Article  CAS  Google Scholar 

  30. Kannangara D, Zhang H, Shen W (2008) Colloid Surf A Physicochem Eng Aspects 330:151–160

    Article  CAS  Google Scholar 

  31. Della Volpe C, Penati A, Peruzzi R, Siboni S, Toniolo L, Colombo C (2000) J Adh Sci Tech 14:273–299

    Google Scholar 

  32. Della Volpe C, Dire S, Pagani E, (1997) J Non-Cryst Solids 209:51–60

    Google Scholar 

  33. Della Volpe C, Maniglio D, Morra M, Siboni S (2002) Colloid Surf A 206:47–67

    Google Scholar 

  34. Brugnara M, Degasperi E, Della Volpe C, Maniglio D, Penati A, Siboni S, Toniolo L, Poli T, Invernizzi S, Castelvetro V (2004) Colloid Surf A 241:299–312

    Google Scholar 

  35. Stejskal J, Trchova M, Sapurina I (2005) J Appl Polym Sci 98:2347–2354

    Article  CAS  Google Scholar 

  36. Havlinova B, Katuscak S, Petrovicova M, Makova A, Brezoca V (2009) J Cult Heritage 10:222–231

    Article  Google Scholar 

  37. Vicini S, Princi E, Luciano G, Franceschi E, Pedemonte E, Oldak D, Kaczmarek H, Sionkowska A (2004) Therm Acta 418:123–130

    Article  CAS  Google Scholar 

  38. Jain RK, Lal K, Bhatnagar HL (1985) J Appl Polym Sci 30:897–903

    Article  CAS  Google Scholar 

  39. Gaan S, Rupper P, Salimova V, Heuberger M, Rabe S, Vogel F (2009) Polym Degrad Stab 94:1125–1134

    Article  CAS  Google Scholar 

  40. Salgaonkar LP, Jayaram RV (2004) J Appl Polym Sci 93:1981–1988

    Article  CAS  Google Scholar 

  41. Bodart M, de Peñaranda R, Deneyer A, Flamant G (2008) Build Environ 43:2046–2058

    Article  Google Scholar 

  42. Larsson PT, Hult EV, Wickholm, Pettersson E, Iversen T (1999) Solid Static Nucl Magn Reson 15: 31–40

Download references

Acknowledgments

The Trento Provincial Authority is gratefully acknowledged for funding (PAT—CENACOLI project). Mr. L. Benedetti is acknowledged for the use of the colorimeter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Cappelletto.

Additional information

This paper is dedicated to Klaus Mueller, who passed away unexpectedly during the preparation of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappelletto, E., Callone, E., Campostrini, R. et al. Hydrophobic siloxane paper coatings: the effect of increasing methyl substitution. J Sol-Gel Sci Technol 62, 441–452 (2012). https://doi.org/10.1007/s10971-012-2747-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2747-1

Keywords

Navigation