Skip to main content
Log in

Comments on the wetting behavior of non-porous substrates for ceramic coated-conductor applications

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This work gives an overview of the possibilities to improve the wetting behavior of precursors for coated conductors on non-porous substrates. Within this work, all coatings were performed on a metallic Ni–W/La2Zr2O7/CeO2 substrate using water-based Y, Ba, Cu containing precursors. The results described in this paper can be used for different technologies of chemical solution deposition, as there are ink jet printing, dip coating, spin coating etc. Starting from the forces involved during wetting, a separation between solid and liquid modifications was made. This study revealed that if a good cleaning procedure of the substrate, whether or not combined with a targeted modification of the precursor is applied, water-based solutions can be used without restriction towards their wetting behaviour leading to a sustainable technology within the coating industry. Within this work, special attention is given to (1) fast determination of the substrate cleaning procedure quality by the creation of wetting envelopes and (2) the use of a screening design of experiment to study the effects of intrinsic solution factors, such as precursor formulation, influencing the coating behavior. All modification discussed are expandable to all kinds of precursors and substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shimoda T, Matsuki Y, Furusawa M, Aoki T, Yudasaka I, Tanaka H, Iwasawa H, Wang DH, Miyasaka M, Takeuchi Y (2006) Nature 440:783–786

    Article  CAS  Google Scholar 

  2. Schwartz RW, Schneller T, Waser R (2004) C R Chim 7:433–461

    Article  CAS  Google Scholar 

  3. Hardy A, Mondelaers D, Vanhoyland G, Van Bael MK, Mullens J, Van Poucke LC (2003) J Sol Gel Sci Technol 26:1103–1107

    Article  CAS  Google Scholar 

  4. Vermeir P, Cardinael I, Schaubroeck J, Verbeken K, Baecker M, Lommens P, Knaepen W, D’haen J, De Buysser K, Van Driessche I (2010) Inorg Chem 49:4471–4477

    Article  CAS  Google Scholar 

  5. Llordes A, Zalamova K, Ricart S, Palau A, Pomar A, Puig T, Hardy A, Van Bael MK, Obradors X (2010) Chem Mater 22:1686–1694

    Article  CAS  Google Scholar 

  6. Van Driessche I, Penneman G, Bruneel E, Hoste S (2002) Pure Appl Chem 74:2101–2109

    Article  Google Scholar 

  7. Zhong XL, Wang JB, Liao M, Huang GJ, Xie SH, Zhou YC, Qiao Y, He JP (2007) Appl Phys Lett 90:152903

    Article  Google Scholar 

  8. Sakamoto W, Iwata A, Yogo T (2008) J Appl Phys 104:104106

    Article  Google Scholar 

  9. Frumar M, Frumarova B, Nemec P, Wagner T, Jedelsky J, Hrdlicka M (2006) J Non-Cryst Solids 352:544–561

    Article  CAS  Google Scholar 

  10. Zheng J, Yang R, Xie L, Qu JL, Liu Y, Li XG (2010) Adv Mater 22:1451–1473

    Article  CAS  Google Scholar 

  11. Yang Z, Ko C, Ramanathan S (2010) J Appl Phys 108:073708

    Article  Google Scholar 

  12. Peng XL, Matthews A, Xue S (2011) J Mater Sci 46:1–37

    Article  CAS  Google Scholar 

  13. Vermeir P, Cardinael I, Baecker M, Schaubroeck J, Schacht E, Hoste S, Van Driessche I (2009) Supercond Sci Technol 22:075009

    Article  Google Scholar 

  14. Van de Velde N, Van de Vyver D, Brunkahl O, Hoste S, Bruneel E, Van Driessche I (2010) Eur J Inorg Chem 2:233–241

    Article  Google Scholar 

  15. Berber H, Sarac A, Yildirim H (2011) Prog Org Coat 71:225–233

    Article  CAS  Google Scholar 

  16. Chang YM, Hu WH, Fang WB, Chen SS, Chang CT, Ching HW (2011) J Air Waste Manage 61:35–45

    Article  CAS  Google Scholar 

  17. Arin M, Lommens P, Avci N, Hopkins SC, De Buysser K, Arabatzis IM, Fasaki I, Poelman D, Van Driessche I (2011) J Eur Ceram Soc 31:1067–1074

    Article  CAS  Google Scholar 

  18. Schoofs B, Van de Vyver D, Vermeir P, Schaubroeck J, Hoste S, Herman G, Van Driessche I (2007) J Mater Chem 17:1714–1724

    Article  CAS  Google Scholar 

  19. Schoofs B, Cloet V, Vermeir P, Schaubroeck J, Hoste S, Van Driessche I (2006) Supercond Sci Technol 19:1178–1184

    Article  CAS  Google Scholar 

  20. Van Driessche I, Penneman G, De Meyer C, Stambolova I, Bruneel E, Hoste S (2002) Key Eng Mater 206–2:479–482

    Article  Google Scholar 

  21. De Buysser K, Lommens P, De Meyer C, Bruneel E, Hoste S, Van Driessche I (2004) Ceram. Silikaty 48:139

    Google Scholar 

  22. Penneman G, Van Driessche I, Bruneel E, Hoste S (2004) Key Eng Mater 264–268:501–504

    Article  Google Scholar 

  23. Goyal A, Paranthaman MP, Schoop U (2004) MRS Bull 29:552–561

    Article  CAS  Google Scholar 

  24. Cordero-Cabrera MC, Mouganie T, Glowacki BA, Baecker M, Falter M, Holzapfel B, Engell J (2007) J Mater Sci 42:7129–7134

    Article  CAS  Google Scholar 

  25. Krebs FC (2009) Sol. Energ. Mat. Sol. C. 93:394–412

    Article  CAS  Google Scholar 

  26. Le HP (1998) J Imaging Sci Techn 42:49–62

    CAS  Google Scholar 

  27. Wang YH, Zhou WD (2010) J. Nanosci. Nanotechno. 10:1563–1583

    Article  CAS  Google Scholar 

  28. Young T (1805) Phil Trans R Lond 95:65–87

    Article  Google Scholar 

  29. Degennes PG (1985) Rev Mod Phys 57:827–863

    Article  CAS  Google Scholar 

  30. Chow TS (1998) J. Phys.-Condens. Mat. 10:L445–L451

    CAS  Google Scholar 

  31. Lubna N, Auner G, Patwa R, Herfurth H, Newaz G (2011) Appl Surf Sci 257:4749–4753

    Article  CAS  Google Scholar 

  32. Yaghoubi H, Taghavinia N, Alamdari EK (2010) Surf Coat Tech 204:1562–1568

    Article  CAS  Google Scholar 

  33. Petersson L, Meier P, Kornmann X, Hillborg H (2011) J Phys D Appl Phys 44:034011

    Article  Google Scholar 

  34. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  35. Lejeune M, Chartier T, Dossou-Yovo C, Noguera R (2009) J Eur Ceram Soc 29:905–911

    Article  CAS  Google Scholar 

  36. Zdziennicka A, Janczuk B (2010) J Colloid Interf Sci 343:594–601

    Article  CAS  Google Scholar 

  37. He G, Cai JH, Ni G (2008) Mater Chem Phys 110:110–114

    Article  CAS  Google Scholar 

  38. Yang JX, Peterlik H, Lomoschitz M, Schubert U (2010) J Non-Cryst Solids 356:25–27

    Google Scholar 

  39. Ban T, Tanaka Y, Ohya Y (2011) Thin Solid Films 519:3468–3474

    Article  CAS  Google Scholar 

  40. Han C, Pelaez M, Likodimos V, Kontos AG, Falaras P, O’Shea K, Dionysiou DD (2011) Appl Catal B Environ 107:77–87

    Article  CAS  Google Scholar 

  41. Martell AE, Smith RM (1977) Critical stability constants—volume 3: other organic ligands. Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Van Driessche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vermeir, P., Deruyck, F., Feys, J. et al. Comments on the wetting behavior of non-porous substrates for ceramic coated-conductor applications. J Sol-Gel Sci Technol 62, 378–388 (2012). https://doi.org/10.1007/s10971-012-2737-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2737-3

Keywords

Navigation