Skip to main content
Log in

Sol–gel synthesis of Eu3+ incorporated CaMoO4: the enhanced luminescence performance

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In order to develop high efficiency red emitting phosphors, Ca0.76MoO4: Eu 3+0.24 samples are investigated via sol–gel and solid state reaction. The XRD analysis reveals that both methods can synthesize phosphors with tetragonal CaMoO4 phase successfully. Smaller crystal size of samples prepared by sol–gel can be observed, and the grain size of these samples are around 100–200 nm, which is also smaller than the one prepared by solid state reaction. All phosphors present a red emission at 616 nm wavelength and one sol–gel synthesized sample exhibits the strongest emission intensity because of the higher quantum efficiency. It is attributed to the removal of lattice defects by sol–gel, in which way luminescent efficiency is enhanced. This can be reflected by the longer fluorescent lifetime of phosphors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nishiura S, Tanabe S, Fujioka K, Fujimoto Y (2011) Properties of transparent Ce: YAG ceramic phosphors for white LED. Optic Mater 33:688–691

    Article  CAS  Google Scholar 

  2. Won CW, Nersisyan HH, Won HI, Youn JW (2011) Integrated chemical process for exothermic wave synthesis of high luminance YAG: Ce phosphors. J Lumin 131:2174–2180

    Article  CAS  Google Scholar 

  3. Wang Z, Liang H, Gong M, Su Q (2007) Luminescence investigation of Eu3+ activated double molybdates red phosphors with scheelite structure. J Alloys Compd 432:308–312

    Article  CAS  Google Scholar 

  4. Ci Z, Wang Y, Zhang J, Sun Y (2008) Ca1−xMo1−ySiyO4: Eu 3+x : a novel red phosphor for white light emitting diodes. Phys B 403:670–674

    Article  CAS  Google Scholar 

  5. Wang XX, Xian YL, Shi JX, Su Q, Gong ML (2007) The potential red emitting Gd2−y Eu y (WO4)3−x (MoO4) x phosphors for UV InGaN-based light-emitting diode. Mater Sci Eng B 140:69–72

    Article  CAS  Google Scholar 

  6. Hu Y, Zhang W, Ye H, Wang D, Zhang S, Huang X (2005) A novel red phosphor for white light emitting diodes. J Alloys Compd 390:226–229

    Article  CAS  Google Scholar 

  7. Yan S, Zhang J, Zhang X, Lu S, Ren X, Nie Z, Wang X (2007) Enhanced red emission in CaMoO4: Bi3+, Eu3+. J Phys Chem C 111:13256–13260

    Article  CAS  Google Scholar 

  8. Liu J, Lian H, Shi C (2007) Improved optical photoluminescence by charge compensation in the phosphor system CaMoO4: Eu3+. Optic Mater 29:1591–1594

    Article  CAS  Google Scholar 

  9. Xie A, Yuan X, Hai S, Wang J, Wang F, Li L (2009) Enhancement emission intensity of CaMoO4: Eu3+, Na+ phosphor via Bi co-doping and Si substitution for application to white LEDs. J Phys D Appl Phys 42:105107

    Article  Google Scholar 

  10. Zhou Y, Liu J, Yang X, Yu X, Wang L (2011) Self-assembly and photoluminescence characterization of CaMoO4: Eu3+, Na+ superstructure via a facile surfactant-free hydrothermal method. J Electrochem Soc 158:K74–K80

    Article  CAS  Google Scholar 

  11. Parchur AK, Ningthoujam RS (2011) Preparation and structure refinement of Eu3+ doped CaMoO4 nanoparticles. Dalton Trans 40:7590–7594

    Article  CAS  Google Scholar 

  12. Parchur AK, Ningthoujam RS, Rai SB, Okram GS, Singh RA, Tyagi M, Gadkari SC, Tewari R, Vatsa RK (2011) Luminescence properties of Eu3+ doped CaMoO4 nanoparticles. Dalton Trans 40:7595–7601

    Article  CAS  Google Scholar 

  13. Yang Y, Li X, Feng W, Yang W, Li W, Tao C (2011) Effect of surfactants on morphology and luminescent properties of CaMoO4: Eu3+ red phosphors. J Alloy Compd 509:845–848

    Article  CAS  Google Scholar 

  14. Zhou L, Wang L, Gong F, Wei J (2007) Synthesis and photoluminescence of CaMoO4 superfine powder. Nat Sci (EdGuangxi University) 32:394–397 (in Chinese)

    CAS  Google Scholar 

  15. Patterson AL (1939) The Scheerer formula for X-Ray particle size determination. Phys Rew 56:978–982

    Article  CAS  Google Scholar 

  16. Ha MG, Lee JH, Bae JS, Kim JP, Hong KS, Yang HS (2011) Photophysical properties of highly efficient red-emitting CaTiO3: Eu3+ phosphors under near ultra-violet excitation. Curr Appl Phys 11:1379–1383

    Article  Google Scholar 

  17. Chambers MD, Rousseve PA, Clarke DR (2009) Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26. J Lumin 129:263–269

    Article  CAS  Google Scholar 

  18. Rakov N, Ramos FE, Hirata G, Xiao M (2003) Strong photoluminescence and cathodoluminescence due to ff transitions in Eu3+ doped Al2O3 powders prepared by direct combustion synthesis and thin films deposited by laser ablation. Appl Phys Lett 83:272–274

    Article  CAS  Google Scholar 

  19. Werts MHV, Jukes RTF, Verhoeven JW (2002) The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys Chem Chem Phys 4:1542–1548

    Article  CAS  Google Scholar 

  20. Sakka S (2005) Handbook of sol–gel science and technology: processing, characterization and applications, volume II: characterization of sol–gel materials and products. Kluwer Academic Publishers, Heidelberg, pp 359–388

    Google Scholar 

  21. Ribeiro SJL, Dahmouche K, Ribeiro CA, Santilli CV, Pulcinelli SH (1998) Study of hybrid silica-polyethyleneglycol xerogels by Eu3+ luminescence spectroscopy. J Sol–Gel Sci Techn 13:427–432

    Google Scholar 

  22. Cao FB, Li LS, Tian YW, Chen YJ, Wu XR (2011) Investigation of red-emission phosphors (Ca, Sr)(Mo, W)O: Eu3+ crystal structure, luminous characteristics and calculation of Eu3+ 5D0 quantum efficiency. Thin Solid Films 519:7971–7976

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21071034). The authors are also grateful to Instrumental Analysis and Research Center, Sun Yat-sen University for their performance of SEMs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihua Hu.

Appendix

Appendix

See Table 2.

Table 2 Area of emission peaks corresponding to Eu3+ emissions (λex = 394 nm)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Hu, Y., Zhang, W. et al. Sol–gel synthesis of Eu3+ incorporated CaMoO4: the enhanced luminescence performance. J Sol-Gel Sci Technol 62, 227–233 (2012). https://doi.org/10.1007/s10971-012-2716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2716-8

Keywords

Navigation