Skip to main content
Log in

New insights into the bioactivity of SiO2–CaO and SiO2–CaO–P2O5 sol–gel glasses by molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The structures of binary xCaO · (100 − x)SiO2 glasses with x = 10, 20 and 30 mol-% and ternary (20 − x)CaO · xP2O5 · 80SiO2 glasses with x = 3, 10, 15, 17 and 20 mol-% have been studied by means of classical molecular dynamics simulations using both the melt-quenched and the sol–gel protocols. The structural picture derived correlates the bioactive behaviour to the combined effects of the connectivity of the extended silicate network and to the tendency to form (or not to form) non-homogeneous domains. In this context, a mathematical relationship that relates the Ca/P ratio in the Ca phosphate micro-segregation zones to the P2O5 content in ternary glasses has been developed and this has been used to fine-tuning the optimum amount of P in a glass for its highest in vitro bioactivity. The composition with optimal Ca/P ratio, 80Si–14.8Ca–5.2P, has been synthesized and the results of bioactivity tests have confirmed the prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li R, Clark AE, Hench LL (1991) J Appl Biomat 2:231–239

    Article  CAS  Google Scholar 

  2. Pereira MM, Clark AE, Hench LL (1994) J Biomed Mater Res 28:693–698

    Article  CAS  Google Scholar 

  3. Martinez A, Izquierdo-Barba I, Vallet-Regi M (2000) Chem Mater 12:3080–3088

    Article  CAS  Google Scholar 

  4. Vallet-Regi M, Izquierdo-Barba I, Salinas AJ (1999) J Biomed Mater Res 46:560–565

    Article  CAS  Google Scholar 

  5. Vallet-Regi M, Ragel CV, Salinas AJ (2003) Eur J Inorg Chem 103:1029–1043

    Article  Google Scholar 

  6. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) J Biomed Mater Res 24:721–734

    Article  CAS  Google Scholar 

  7. Salinas AJ, Vallet-Regí M, Izquierdo-Barba I (2001) J Sol-Gel Sci Technol 21:13–25

    Article  CAS  Google Scholar 

  8. Salinas AJ, Martin AI, Vallet-Regi M (2002) J Biomed Mater Res 61:524–532

    Article  CAS  Google Scholar 

  9. Vallet-Regi M, Salinas AJ, Ramirez-Castellanos J, Gonzàlez-Calbet JM (2005) Chem Mater 17:1874–1879

    Article  CAS  Google Scholar 

  10. Tilocca A (2009) Proc R Soc A 465:1003–1027

    Article  CAS  Google Scholar 

  11. Tilocca A, Cormack AN, de Leeuw NH (2007) Chem Mater 19:95–103

    Article  CAS  Google Scholar 

  12. Mead RN, Mountjoy G (2006) J Phys Chem B 110:14273–14278

    Article  CAS  Google Scholar 

  13. Pedone A, Malavasi G, Cormack AN, Segre U, Menziani MC (2007) Chem Mater 19:3144–3154

    Article  CAS  Google Scholar 

  14. Pedone A, Malavasi G, Menziani MC, Segre U, Cormack AN (2008) J Phys Chem C 112:11034–11041

    Article  CAS  Google Scholar 

  15. Lusvardi G, Malavasi G, Cortada M, Menabue L, Menziani MC, Pedone A, Segre U (2008) J Phys Chem B 112:12730–12739

    Article  CAS  Google Scholar 

  16. Tilocca A, Cormack AN (2010) Langmuir 26:545–551

    Article  CAS  Google Scholar 

  17. Garofalini SH (2001) Molecular modelling theory: application in the geosciences. In: Cygan RT, Kubiki JD (eds) Reviews in mineralogy geochemistry. Geochemical Society, Mineralogical Society of America, Washington, DC

    Google Scholar 

  18. Pedone A, Malavasi G, Menziani MC, Cormack AN, Segre U (2006) J Phys Chem B 110:11780–11795

    Article  CAS  Google Scholar 

  19. Pedone A, Malavasi G, Menziani MC, Segre U, Cormack AN (2008) Chem Mater 20:4356–4366

    Article  CAS  Google Scholar 

  20. Huff NT, Demiralp E, Cagin T, Goddard WA III (1999) J Non-Cryst Solids 253:133–142

    Article  CAS  Google Scholar 

  21. Vollmayr K, Kob W, Binder K (1996) Phys Rev B 54:15808–15827

    Article  CAS  Google Scholar 

  22. Pota M, Pedone A, Malavasi G, Durante C, Cocchi M, Menziani MC (2010) Comput Mater Sci 47:739–751

    Article  CAS  Google Scholar 

  23. Lee BM, Baik HK, Seong BS, Munetoh S, Motooka T (2006) Comput Mater Sci 37:203–208

    Article  CAS  Google Scholar 

  24. Hanneman A, Schon JC, Jansen M (2005) J Mater Chem 15:1167–1178

    Article  Google Scholar 

  25. Petkov V, Holzhuter G, Troge U, Gerber T, Himmel B (1998) J Non-Cryst Solids 231:17–30

    Article  CAS  Google Scholar 

  26. Bhattacharya S, Kieffer J (2008) J Phys Chem C 112:1764–1771

    Article  CAS  Google Scholar 

  27. Mead RN, Mountjoy G (2006) Chem Mater 18:3956–3964

    Article  CAS  Google Scholar 

  28. Kolb M, Herrmann J (1985) J Phys A 18:L435–L441

    Article  CAS  Google Scholar 

  29. Jullien R, Hasmy A (1995) Phys Rev Lett 74:4003–4006

    Article  CAS  Google Scholar 

  30. Pereira JCG, Catlow CRA, Price GD (2001) J Phys Chem A 106:130–148

    Article  Google Scholar 

  31. Elanany M, Selvam P, Yokosuka T, Takami S, Kubo M, Imamura A, Miyamoto A (2003) J Phys Chem B 107:1518–1524

    Article  CAS  Google Scholar 

  32. Priven A (2004) Glass Technol 45:244–254

    CAS  Google Scholar 

  33. SciGlass 3.5 (1997) SciVision, Burlington

  34. Smith W, Forrester TR (1996) J Mol Graph 14:136–141

    Article  CAS  Google Scholar 

  35. Zhravlev LT (1987) Langmuir 3:316–318

    Article  Google Scholar 

  36. Lusvardi G, Malavasi G, Menabue L, Aina V, Bertinetti L, Cerrato G, Morterra C (2010) Langmuir 26:10303–10314

    Article  CAS  Google Scholar 

  37. Saravanapavan P, Hench LL (2003) J Non Cryst Solids 318:1–13

    Article  CAS  Google Scholar 

  38. Pedone A (2009) J Phys Chem C 113:20773–20784

    Article  CAS  Google Scholar 

  39. Bohner M, Lemaitre J (2009) Biomaterials 30:2175–2179

    Article  CAS  Google Scholar 

  40. Skipper LJ, Sowrey FE, Pickup DM, Drake KO, Smith ME, Saravanapavan P, Hench LL, Newport RJ (2005) J Mater Chem 15:2369–2374

    Article  CAS  Google Scholar 

  41. Lenova E, Izquierdo-Barba I, Arcos D, Lopez-Noriega A, Hedin N, Vallet-Regì M, Eden M (2008) J Phys Chem C 112:5552–5562

    Article  Google Scholar 

  42. Pedone A, Charpentier T, Malavasi G, Menziani MC (2010) Chem Mater 22:5644–5652

    Article  CAS  Google Scholar 

  43. Tilocca A, Cormack AN (2008) Il Nuovo Cimento B 123:1415–1423

    Google Scholar 

Download references

Acknowledgments

Financial support from the Italian Ministry MIUR (Project COFIN2006, Prot. 2006032335_005 and Project COFIN2006, Prot. 2006033728 is gratefully acknowledged as well as the research project MAT2007-61927 MAT2008-736 of CICYT Spain. A.P. would like to thank the ‘Fondazione Cassa di Risparmio di Modena’ for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Menabue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malavasi, G., Menabue, L., Menziani, M.C. et al. New insights into the bioactivity of SiO2–CaO and SiO2–CaO–P2O5 sol–gel glasses by molecular dynamics simulations. J Sol-Gel Sci Technol 67, 208–219 (2013). https://doi.org/10.1007/s10971-011-2453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2453-4

Keywords

Navigation