Skip to main content
Log in

Synthesis of mesostructured silica from monoalkyl-substituted double five-ring units

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A mesostructured silica-based material was synthesized by self-assembly of a novel amphiphilic molecule consisting of a well-defined siloxane head with a double five-ring (D5R) structure and a hydrophobic alkyl tail. A precursor functionalized with ethoxy groups, C22H45Si10O15(OEt)9 (1), was hydrolyzed under an acidic condition with the retention of the D5R units, leading to the formation of two-dimensional (2D) hexagonal phase by evaporation-induced self-assembly of amphiphilic hydrolyzed molecules. Solid-state 29Si MAS NMR analysis of the resulting hybrid solid confirmed that the D5R units were cross-linked to form siloxane networks. Calcination of this hybrid solid gave mesoporous silica with high BET surface area (740 m2 g−1). These results expand the design possibility of silica-based materials at both molecular- and meso-scales, leading to the bottom up synthesis of hierarchically ordered materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sanchez C, Soler-Illia GJDAA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Chem Mater 13:3061–3083

    Article  CAS  Google Scholar 

  2. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM (2001) Acc Chem Res 34:319–330

    Article  CAS  Google Scholar 

  3. Murugavel R, Walawalkar MG, Dan M, Roesky HW, Rao CNR (2004) Acc Chem Res 37:763–774

    Article  CAS  Google Scholar 

  4. Wan Y, Zhao DY (2007) Chem Rev 107:2821–2860

    Article  CAS  Google Scholar 

  5. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Chem Int Ed 45:3216–3251

    Article  CAS  Google Scholar 

  6. Grosso D, Cagnol F, Soler-Illia GJDAA, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Adv Funct Mater 14:309–322

    Article  CAS  Google Scholar 

  7. Shimojima A, Sugahara Y, Kuroda K (1997) Bull Chem Soc Jpn 70:2847–2853

    Article  CAS  Google Scholar 

  8. Shimojima A, Kuroda K (2006) Chem Rec 6:53–63

    Article  CAS  Google Scholar 

  9. Shimojima A, Wu CW, Kuroda K (2007) J Mater Chem 17:658–663

    Article  CAS  Google Scholar 

  10. Katagiri K, Ariga K, Kikuchi J (1999) Chem Lett 661–662

  11. Katagiri K, Hashizume M, Ariga K, Terashima T, Kikuchi J (2007) Chem Eur J 13:5272–5281

    Article  CAS  Google Scholar 

  12. Carlos LD, Bermudez VDZ, Amaral VS, Nunes SC, Silva NJO, Sa Ferreira RA, Rocha J, Santilli CV, Ostrovskii D (2007) Adv Mater 19:341–348

    Article  CAS  Google Scholar 

  13. Boury B, Corriu RJP, Strat VL, Delord P, Nobili M (1999) Angew Chem Int Ed 38:3172–3175

    Article  CAS  Google Scholar 

  14. Boury B, Corriu RJP (2002) Chem Commun 795–802

  15. Boury B, Corriu R (2003) Chem Rec 3:120–132

    Article  CAS  Google Scholar 

  16. Moreau JJE, Pichon BP, Wong Chi Man M, Bied C, Pritzkow H, Bantignies JL, Dieudonné P, Sauvajol JL (2004) Angew Chem Int Ed 43:203–206

    Article  CAS  Google Scholar 

  17. Moreau JJE, Vellutini L, Wong Chi Man M, Bied C, Dieudonné P, Bantignies JL, Sauvajol JL (2005) Chem Eur J 11:1527–1537

    Article  CAS  Google Scholar 

  18. Karatchevtseva I, Cassidy DJ, Wong Chi Man M, Mitchell DRG, Hanna JV, Carcel C, Moreau JJE, Bartlett JR (2007) Adv Funct Mater 17:3926–3932

    Article  CAS  Google Scholar 

  19. Arrachart G, Carcel C, Moreau JJE, Hartmeyer G, Alonso B, Massiot D, Creff G, Bantignies JL, Dieudonne P, Wong Chi Man M, Althoff G, Babonneau F, Bonhomme C (2008) J Mater Chem 18:392–399

    Article  CAS  Google Scholar 

  20. Arrachart G, Creff G, Wadepohl H, Blanc C, Bonhomme C, Babonneau F, Alonso B, Bantigniesm JL, Carcel C, Moreau JJE, Dieudonné P, Sauvajol JL, Massiot D, Wong Chi Man M (2009) Chem Eur J 15:5002–5005

    Article  CAS  Google Scholar 

  21. Luo Y, Lin J, Duan H, Zhang J, Lin C (2005) Chem Mater 17:2234–2236

    Article  CAS  Google Scholar 

  22. Yang L, Peng P, Huang K, Mague JT, Li H, Lu Y (2008) Adv Funct Mater 18:1526–1535

    Article  CAS  Google Scholar 

  23. Shimojima A, Kuroda K (2003) Angew Chem Int Ed 42:4057–4060

    Article  CAS  Google Scholar 

  24. Shimojima A, Liu Z, Ohsuna T, Terasaki O, Kuroda K (2005) J Am Chem Soc 127:14108–14116

    Article  CAS  Google Scholar 

  25. Sakamoto S, Shimojima A, Miyasaka K, Ruan J, Terasaki O, Kuroda K (2009) J Am Chem Soc 131:9634–9635

    Article  CAS  Google Scholar 

  26. Shimojima A, Goto R, Atsumi N, Kuroda K (2008) Chem Eur J 14:8500–8506

    Article  CAS  Google Scholar 

  27. Yoshimoto A, Gunji T (2004) Prog Polym Sci 29:149–182

    Article  Google Scholar 

  28. Harrison PG (1997) J Organomet Chem 542:141–183

    Article  CAS  Google Scholar 

  29. Morris RE (2005) J Mater Chem 15:931–938

    Article  CAS  Google Scholar 

  30. Fyfe CA, Fu G (1995) J Am Chem Soc 117:9709–9714

    Article  CAS  Google Scholar 

  31. Zhang L, Abbenhuis HCL, Yang Q, Wang YM, Magusin PCMM, Mezari B, Santen RA, Li C (2007) Angew Chem Int Ed 46:5003–5006

    Article  CAS  Google Scholar 

  32. Hagiwara Y, Shimojima A, Kuroda K (2008) Chem Mater 20:1147–1153

    Article  CAS  Google Scholar 

  33. Cassagneau T, Caruso F (2002) J Am Chem Soc 124:8172–8180

    Article  CAS  Google Scholar 

  34. Harrison PG, Kannengiesser R (1996) Chem Commun 415–416

  35. Burton A, Elomari S, Medrud RC, Chan IY, Bull LM, Virroratos ES (2003) J Am Chem Soc 125:1633–1642

    Article  CAS  Google Scholar 

  36. Agaskar PA (1991) Inorg Chem 30:2707–2708

    Article  CAS  Google Scholar 

  37. Bassindale AR, Gentle T (1996) J Organomet Chem 521:391–393

    Article  CAS  Google Scholar 

  38. Ueda N, Gunji T, Abe Y (2008) Mater Technol 26:162–169

    CAS  Google Scholar 

  39. Ravikovitch PI, Wei D, Chueh WT, Haller GL, Neimark AV (1997) J Phys Chem B 101:3671–3679

    Article  CAS  Google Scholar 

  40. Villaescusa LA, Márquez FM, Zicovich-Wilson CM, Camblor MA (2002) J Phys Chem 106:2796–2800

    CAS  Google Scholar 

  41. Morey MS, O’Brien S, Schwarz S, Stucky GD (2000) Chem Mater 12:898–911

    Article  CAS  Google Scholar 

  42. Day VW, Klemperer WG, Mainz VV, Millar DM (1985) J Am Chem Soc 107:8262–8264

    Article  CAS  Google Scholar 

  43. Goto R, Shimojima A, Kuge H, Kuroda K (2008) Chem Commun 6152–6154

Download references

Acknowledgments

The authors are grateful to Prof. D. Mochizuki (Tokyo Institute of Technology), Dr. Y. Hagiwara, and Mr. R. Goto (Waseda University) for experimental help. This work was supported in part by the Elements Science and Technology Project of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and a Waseda University Grant for Special Research Projects (No. 2009B-172). This work was performed under the Global COE program “Practical Chemical Wisdom”. The A3 Foresight Program “Synthesis and Structural Resolution of Novel Mesoporous Materials” supported by the Japan Society for the Promotion of Science (JSPS) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atsushi Shimojima or Kazuyuki Kuroda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimojima, A., Kuge, H. & Kuroda, K. Synthesis of mesostructured silica from monoalkyl-substituted double five-ring units. J Sol-Gel Sci Technol 57, 263–268 (2011). https://doi.org/10.1007/s10971-010-2224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2224-7

Keywords

Navigation