Skip to main content
Log in

Organic–inorganic hybrid melting gels

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

An Erratum to this article was published on 12 February 2011

Abstract

Melting gels are a class of organically modified silica gels that are rigid at room temperature, flow at temperature T1 and consolidate at temperature T2 (T2 > T1), when crosslinking is complete. The process of (a) softening, (b) becoming rigid and (c) re-softening can be repeated many times. Mixtures of mono-substituted alkoxysilanes and di-substituted alkoxysilanes have been studied in a systematic way to identify suitable melting gel compositions. The mixtures and the resulting melting gels have been characterized for their softening temperatures and consolidation temperatures. With an interest in using these materials for sealing microelectronics, their physical properties have been measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Avnir D, Klein LC, Levy D, Schubert U, Wojcik AB (1998) Organo-silica sol-gel materials. In: Rappoport Z, Apeloig Y (eds) The chemistry of organosilicon compounds, vol 2. Wiley, London, pp 2317–2362

    Google Scholar 

  2. Matsuda A, Sasaki T, Hasegawa K, Tatsumisago M, Minami T (2001) Thermal softening behavior and application to transparent thick films of poly(benzylsilsesquioxane) particles prepared by the sol-gel process. J Am Ceram Soc 84:775–780

    Article  CAS  Google Scholar 

  3. Jitianu A, Doyle J, Amatucci G, Klein LC (2008) Methyl-modified melting gels for hermetic barrier coatings. Proceedings MS&T 2008 Enabling Surface Coating Systems: Multifunctional Coatings (CD-ROM), Pittsburgh, pp 2171–2182

    Google Scholar 

  4. Jitianu A, Amatucci G, Klein LC (2008) Phenyl-substituted siloxane hybrid gels that soften below 140 C. J Am Ceram Soc 92:36–40

    Article  Google Scholar 

  5. Jitianu A, Amatucci G, Klein LC (2008) Organic-inorganic sol-gel thick films for humidity barriers. J Mater Res 23:2084–2090

    Article  CAS  Google Scholar 

  6. Jitanu A, Klein LC (2009) Sol-gel hybrids for electronic applications: hermetic coatings for microelectronics and energy storage. In: Merhari L (ed) Hybrid nanocomposites for nanotechnology: electronic, optical, magnetic and bio/medical applications. Springer, New York, pp 429–453

    Google Scholar 

  7. Hatton BD, Landskron K, Hunks WJ, Bennett MR, Shukaris D, Petrovic DD, Ozin GA (2006) Materials chemistry for low-k materials. Mater Today 9:22–31

    Article  CAS  Google Scholar 

  8. Tepper T, Berger S (1999) Correlation between microstructure, particle size, dielectric constant, and electrical resistivity of nano-size amorphous SiO2 powder. Nanostruct Mater 11:1081–1089

    Article  CAS  Google Scholar 

  9. Schmidt H (1984) Organically modified silicates by the sol-gel process. In: Brinker CJ, Clark DE, Ulrich DR (eds) 32 Better ceramics through chemistry, MRS. pp 327–335 (Mat. Res. Soc. Symp. Proc.)

  10. Sanchez C (1994) Chemical design of hybrid organic-inorganic materials synthesized via sol-gel. New J Chem 10:1007–1040

    Google Scholar 

  11. Gunji T, Iizuka Y, Arimitsu K, Abe Y (2004) Preparation and properties of alkoxy (methyl)silsesquioxanes as coating agents. J Polym Sci Part A Polym Chem 42:3676–3684

    Article  CAS  Google Scholar 

  12. Ghisleni R, Lucca DA, Wang YQ, Lee J-K, Nastasi M, Dong J, Maher A (2008) Ion irradiation effects on surface mechanical behavior and shrinkage of hybrid sol-gel derived silicate thin films. Nucl Instr Meth Phys Res B266:2433–2456

    Google Scholar 

  13. Xu Y, Liu R, Wu D, Sun Y, Gao H, Yuan H, Deng F (2005) Ammonia-catalyzed hydrolysis kinetics of mixture of tetraethoxysilane with methyltriethoxysilane by 29Si NMR. J Non-Cryst Solids 351:2403–2413

    Article  CAS  Google Scholar 

  14. Orel B, Jese R, Vilcnik A, Lavrencic-Stangar U (2005) Hydrolysis and solvolysis of Methyltriethoxysilane catalyzed with HCl or trifluoroacetic acid: IR spectroscopic and surface energy studies. J Sol-Gel Sci Tech 34:251–265

    Article  CAS  Google Scholar 

  15. Liu R, Xu Y, Wu D, Sun Y, Gao H, Yuan H, Deng F (2004) Comparative study on hydrolysis kinetics of substituted ethoxysilanes by liquid-state 29Si-NMR. J Non-Cryst Solids 343:61–70

    Article  CAS  Google Scholar 

  16. Jackson A, Jitianu A, Klein LC (2006) Development of hermetic barrier using vinyl triethoxysilane (VTEOS) and sol-gel processing. Mater Matters 1:11–12

    Google Scholar 

  17. Chan Z, Ai’mei L, Xiao Z, Miao F, Juan H, Hongbing Z (2007) Microstructure and properties of ORMOSIL comparing methyl, vinyl, and γ-glycidoxypropyl-substituted silica. Optic Mater 29:1543–1547

    Article  Google Scholar 

  18. Xing W, You B, Wu L (2007) The microstructure and anticorrosive performance of the phytic acid-catalyzed polysilsesquioxane coatings. J Sol-Gel Sci Tech 42:187–195

    Article  CAS  Google Scholar 

  19. Paulussen S, Rego R, Goossens O, Vangeneugden D, Rose K (2005) Physical and chemical properties of hybrid barrier coatings obtained in an atmospheric pressure dielectric barrier discharge. J Phys D Appl Phys 38:568–575

    Article  CAS  Google Scholar 

  20. Amberg-Schwab S, Weber U, Burger A, Nique S, Xalter R (2006) Development of the passive and active barrier coatings on the basis of inorganic-organic polymers. Monatshefte Chemie (Chem Monthly) 137:657–666

    Article  CAS  Google Scholar 

  21. Hass KH, Amberg-Schwab S, Rose K (1999) Functionalization of coating materials based on inorganic-organic polymers. Thin Solid Films 351:198–203

    Article  Google Scholar 

  22. Jeong S, Ahn S-J, Moon J (2005) Fabrication of patterned inorganic-organic hybrid film for the optical waveguide by microfluidic lithography. J Am Ceram Soc 88:1003–1036

    Article  Google Scholar 

  23. Matsuda A, Matsuno Y, Tatsumisago M, Minami T (1998) Fine patterning and characterization of gel films derived from methyltriethoxysilane and tetraethoxysilane. J Am Ceram Soc 81:2849–2852

    Article  CAS  Google Scholar 

  24. Skrdla PJ, Saavedra S, Armstrong NR, Mendes SB, Peyghambrian N (1999) Sol-gel based, planar waveguide sensor for water vapor. Anal Chem 71:1332–13337

    Article  CAS  Google Scholar 

  25. Kwok DY, Neumann AW (1999) Contact angle measurements and contact angle interpretation. Adv Colloid Interface Sci 8:167–249

    Article  Google Scholar 

  26. Chen W, Fadeev AY, Hsieh MC, Öner D, Youngblood J, McCarthy TJ (1999) Ultrahydrophobic and ultralyophobic surfaces: some comments and examples. Langmuir 15:3395–3399

    Article  CAS  Google Scholar 

  27. Castricum HL, Sah A, Mittelmeijer-Hazeleger MC, Huiskes C, ten Elshof JE (2007) Microstructure and enhanced hydrophobicity in methylated SiO2 for molecular separation. J Mat Chem 17:1509–1517

    Article  CAS  Google Scholar 

  28. Shirtcliffe NJ, McHale G, Newton MI, Perry CC, Roach P (2005) Porous materials show superhydrophobic to superhydrophilic switching. Chem Commun 25:3135–3137

    Article  Google Scholar 

  29. Sanchez C, Julian B, Belleville P, Popall M (2005) Application of hybrid organic-inorganic nanocomposites. J Mat Chem 15:3559–3592

    Article  CAS  Google Scholar 

  30. Tsuzuki Y, Oikubo Y, Matsuura Y, Itatani K, Koda S (2008) Vacuum ultraviolet irradiation on siliceous coatings on polycarbonate substrates. J Sol-Gel Sci Tech 47:131–139

    Article  CAS  Google Scholar 

  31. Yu S, Wong TKS, Hu X, Yong MS (2005) Dielectric and mechanical properties of surface modified organosilicate films. J Sol-Gel Sci Tech 35:69–75

    Article  CAS  Google Scholar 

  32. Ferchichi A, Calas-Etienne S, Smaihi M, Etienne P (2008) Study of mechanical properties of hybrid coatings as a function of their structure using nanoindentation. J Non-Cryst Solids 354:712–716

    Article  CAS  Google Scholar 

  33. Kakiuchida H, Takahashi M, Tokuda Y, Masai H, Yoko T (2007) Effects of organic groups on structure and viscoelastic properties of organic-inorganic polysiloxane hybrid system. J Phys Chem B111:982–988

    Google Scholar 

  34. Masai H, Tokuda Y, Yoko T (2005) Gel-melting method for preparation of organically modified siloxane low-melting glasses. J Mater Res 20:1234–1241

    Article  CAS  Google Scholar 

  35. Kakiuchida H, Takahashi M, Tokuda Y, Masai H, Kuniyoshi M, Yoko T (2006) Viscoelastic and structural properties of the phenyl-modified polysiloxane system with a three-dimensional structure. J Phys Chem B110:7321–7327

    Google Scholar 

  36. Takahashi K, Tadanaga K, Hayashi A, Matsuda A, Tatsumisago M (2007) Effect of phenyltriethoxysilane concentration in starting solutions on thermal properties of polyphenylsilsesquioxane particles prepared by a two-step acid–base catalyzed sol-gel process. J Cer Soc Jpn 115:131–135

    Article  CAS  Google Scholar 

  37. Takahashi K, Tadanaga K, Matsuda A, Hayashi A, Tatsumisago M (2007) Thermoplastic and thermosetting properties of polyphenylsilsesquioxane particles prepared by two-step acid-base catalyzed sol-gel process. J Sol-Gel Sci Tech 41:217–222

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Many students have provided valuable data for this review: A. Jackson, J. Doyle, M. Migliaccio, L. Gambino, E. Neubauer, M. Romelus, D. Sobers, A. Growney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa C. Klein.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10971-011-2414-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, L.C., Jitianu, A. Organic–inorganic hybrid melting gels. J Sol-Gel Sci Technol 55, 86–93 (2010). https://doi.org/10.1007/s10971-010-2219-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2219-4

Keywords

Navigation