Skip to main content
Log in

Simultaneous formation of ferrite nanocrystals and deposition of thin films via a microwave-assisted nonaqueous sol–gel process

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Combination of the surfactant-free nonaqueous sol–gel approach with the microwave technique makes it possible to synthesize Fe3O4, CoFe2O4, MnFe2O4, and NiFe2O4 nanoparticles of about 5–6 nm and with high crystallinity and good morphological uniformity. The synthesis involves the reaction of metal acetates or acetylacetonates as precursors with benzyl alcohol at 170 °C under microwave irradiation of 12 min. Immersion of glass substrates in the reaction solution results in the deposition of homogeneous metal ferrite films whose thickness can be adjusted through the precursor concentration. If preformed nickel nanoparticles are used as a type of curved substrate, the ferrite nanoparticles coat the seeds and form core–shell structures. These results extend the microwave-assisted nonaqueous sol–gel approach beyond the simple synthesis of nanoparticles to the preparation of thin films on flat or curved substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lu AH, Salabas EL, Schuth F (2007) Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  2. Jeong U, Teng XW, Wang Y, Yang H, Xia YN (2007) Adv Mater 19:33–60

    Article  CAS  Google Scholar 

  3. Darling SB, Bader SD (2005) J Mater Chem 15:4189–4195

    Article  CAS  Google Scholar 

  4. Sugimoto M (1999) J Am Ceram Soc 82:269–280

    Article  CAS  Google Scholar 

  5. Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Prog Solid State Chem 34:237–247

    Article  CAS  Google Scholar 

  6. Reimer P, Weissleder R, Lee AS, Wittenberg J, Brady TJ (1990) Radiology 177:729–734

    CAS  Google Scholar 

  7. Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lubbe AS (2000) Cancer Res 60:6641–6648

    CAS  Google Scholar 

  8. Jun YW, Seo JW, Cheon A (2008) Acc Chem Res 41:179–189

    Article  CAS  Google Scholar 

  9. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Angew Chem Int Ed 46:4630–4660

    Article  CAS  Google Scholar 

  10. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Chem Rev 104:3893–3946

    Article  CAS  Google Scholar 

  11. Strobel R, Pratsinis SE (2007) J Mater Chem 17:4743–4756

    Article  CAS  Google Scholar 

  12. Sepelak V, Bergmann I, Kipp S, Becker KD (2005) Z Anorg Allg Chem 631:993–1003

    Article  Google Scholar 

  13. Kang E, Park J, Hwang Y, Kang M, Park JG, Hyeon T (2004) J Phys Chem B 108:13932–13935

    Article  CAS  Google Scholar 

  14. Hyeon T, Lee SS, Park J, Chung Y, Bin Na H (2001) J Am Chem Soc 123:12798–12801

    Article  CAS  Google Scholar 

  15. Shemer G, Tirosh E, Livneh T, Markovich G (2007) J Phys Chem C 111:14334–14338

    Article  CAS  Google Scholar 

  16. Jia X, Chen DR, Jiao XL, He T, Wang HY, Jiang W (2008) J Phys Chem C 112:911–917

    Article  CAS  Google Scholar 

  17. Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li GX (2004) J Am Chem Soc 126:273–279

    Article  CAS  Google Scholar 

  18. Bao NZ, Shen LM, Wang YH, Padhan P, Gupta A (2007) J Am Chem Soc 129:12374–12375

    Article  CAS  Google Scholar 

  19. Song O, Zhang ZJ (2004) J Am Chem Soc 126:6164–6168

    Article  CAS  Google Scholar 

  20. Jana NR, Chen YF, Peng XG (2004) Chem Mater 16:3931–3935

    Article  CAS  Google Scholar 

  21. Calero-DdelC VL, Rinaldi C (2007) J Magn Magn Mater 314:60–67

    Article  CAS  Google Scholar 

  22. Zhao LJ, Zhang HJ, Xing Y, Song SY, Yu SY, Shi WD, Guo XM, Yang JH, Lei YQ, Cao F (2008) J Solid State Chem 181:245–252

    Article  CAS  Google Scholar 

  23. Wu JH, Ko SP, Liu HL, Kim S, Ju JS, Keun-Kim Y (2007) Mater Lett 61:3124–3129

    Article  CAS  Google Scholar 

  24. Pinna N, Grancharov S, Beato P, Bonville P, Antonietti M, Niederberger M (2005) Chem Mater 17:3044–3049

    Article  CAS  Google Scholar 

  25. Yanez-Vilar S, Sanchez-Andujar M, Gomez-Aguirre C, Mira J, Senaris-Rodriguez MA, Castro-Garcia S (2009) J Solid State Chem 182:2685–2690

    Article  CAS  Google Scholar 

  26. Wang WW (2008) Mater Chem Phys 108:227–231

    Article  CAS  Google Scholar 

  27. Djerdj I, Arcon D, Jaglicic Z, Niederberger M (2008) J Solid State Chem 181:1571–1581

    Article  CAS  Google Scholar 

  28. Pinna N, Niederberger M (2008) Angew Chem Int Ed 47:5292–5304

    Article  CAS  Google Scholar 

  29. Hu XL, Gong JM, Zhang LZ, Yu JC (2008) Adv Mater 20:4845–4850

    Article  CAS  Google Scholar 

  30. Bilecka I, Djerdj I, Niederberger M (2008) Chem Commun 886–888

  31. Bilecka I, Elser P, Niederberger M (2009) ACS Nano 3:467–477

    Article  CAS  Google Scholar 

  32. Hammarberg E, Prodi-Schwab A, Feldmann C (2009) J Colloid Interface Sci 334:29–36

    Article  CAS  Google Scholar 

  33. Fidelus J, Piticescu RR, Piticescu RM, Lojkowski W, Giurgiu L (2008) Z Naturforsch B Chem Sci 63:725–729

    CAS  Google Scholar 

  34. Kappe CO, Dallinger D (2009) Mol Divers 13:71–193

    Article  CAS  Google Scholar 

  35. Clavel M, Rauwel E, Willinger M-G, Pinna N (2009) J Mater Chem 19:454–462

    Article  CAS  Google Scholar 

  36. Chambers SA (2008) J Phys Condens Matter 20:264004

    Article  Google Scholar 

  37. Han JG (2009) J Phys D Appl Phys 42:043001

    Article  Google Scholar 

  38. Brinker CJ, Hurd AJ, Schunk PR, Frye GC, Ashley CS (1992) J Non-Cryst Solids 147:424–436

    Article  Google Scholar 

  39. Vallee SJ, Conner WC (2008) J Phys Chem B 112:15483–15489

    CAS  Google Scholar 

  40. Okuya M, Ito N, Shiozaki K (2007) Thin Solid Films 515:8656–8659

    Article  CAS  Google Scholar 

  41. Peiro AM, Domingo C, Peral J, Domenech X, Vigil E, Hernandez-Fenollosa MA, Mollar M, Mari B, Ayllon JA (2005) Thin Solid Films 483:79–83

    Article  CAS  Google Scholar 

  42. Vigil E, Saadoun L, Ayllon JA, Domenech X, Zumeta I, Rodriguez-Clemente R (2000) Thin Solid Films 365:12–18

    Article  CAS  Google Scholar 

  43. Wang R, Liu C, Zeng J, Li KW, Wang H (2009) J Solid State Chem 182:677–684

    Article  CAS  Google Scholar 

  44. Xu HY, Wang H, Jin TN, Yan H (2005) Nanotechnology 16:65–69

    Article  CAS  Google Scholar 

  45. He Y, Lu HT, Sai LM, Lai WY, Fan QL, Wang LH, Huang W (2006) J Phys Chem B 110:13370–13374

    Article  CAS  Google Scholar 

  46. Tsuji M, Miyamae N, Lim S, Kimura K, Zhang X, Hikino S, Nishio M (2006) Cryst Growth Des 6:1801–1807

    Article  CAS  Google Scholar 

  47. Nair B (2001) Int J Toxicol 20:23–50

    Article  Google Scholar 

  48. Scofield JH (1976) J Electron Spectros Relat Phenomena 8:129–137

    Article  CAS  Google Scholar 

  49. Seah MP, Dench WA (1979) Surf Interface Anal 1:2–11

    Article  CAS  Google Scholar 

  50. Olla M, Navarra G, Elsener B, Rossi A (2006) Surf Interface Anal 38:964–974

    Article  CAS  Google Scholar 

  51. Jia FL, Zhang LZ, Shang XY, Yang Y (2008) Adv Mater 20:1050–1054

    Article  CAS  Google Scholar 

  52. Kim JG, Pugmire DL, Battaglia D, Langell MA (2000) Appl Surf Sci 165:70–84

    Article  CAS  Google Scholar 

  53. Allen GC, Harris SJ, Jutson JA, Dyke JM (1989) Appl Surf Sci 37:111–134

    Article  CAS  Google Scholar 

  54. Chu YQ, Fu ZW, Qin QZ (2004) Electrochim Acta 49:4915–4921

    Article  CAS  Google Scholar 

  55. McIntyre NS, Cook MG (1975) Anal Chem 47:2208–2213

    Article  CAS  Google Scholar 

  56. Lenglet M, Hochu F, Durr J, Tuilier MH (1997) Solid State Commun 104:793–798

    Article  CAS  Google Scholar 

  57. Brundle CR, Chuang TJ, Wandelt K (1977) Surf Sci 68:459–468

    Article  CAS  Google Scholar 

  58. Zi ZF, Sun YP, Zhu XB, Yang ZR, Dai JM, Song WH (2009) J Magn Magn Mater 321:1251–1255

    Article  CAS  Google Scholar 

  59. Bala T, Sankar CR, Baidakova M, Osipov V, Enoki T, Joy PA, Prasad BLV, Sastry M (2005) Langmuir 21:10638–10643

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by ETH Zürich and the Swiss National Science Foundation (Project No. 200021_124632) is gratefully acknowledged. We thank Li Luo for SEM, Dr. Igor Djerdj for TEM, Barbara Grant for AFM, and Christian Mensing for the SQUID measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Niederberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilecka, I., Kubli, M., Amstad, E. et al. Simultaneous formation of ferrite nanocrystals and deposition of thin films via a microwave-assisted nonaqueous sol–gel process. J Sol-Gel Sci Technol 57, 313–322 (2011). https://doi.org/10.1007/s10971-010-2165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2165-1

Keywords

Navigation