Skip to main content
Log in

Sol–gel synthesis and structure of silica hybrid materials

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work the research results on the sol–gel synthesis and structure of silica nanocomposites, containing carrageenan and their application as carriers for cell immobilization were described. The samples were prepared at room temperature by replacing different quantity of the inorganic precursor with κ-carrageenan. For studying the structure of the synthesized hybrids the following methods were used: FT-IR, XRD, BET-Analysis, SEM, AFM and Roughness Analysis. The influence of the type of silicon precursors, nature and quantity of organic component on the structure, surface area, design and size of nanostructures was established. The possibility of application of the synthesized biocatalysts in an enzyme degradation process of the toxic, carcinogenic and mutagenic substances benzonitrile, fumaronitrile, o-, m-, and p-tolunitriles was investigated at batch experiments. A two-step biodegradation process in a column bioreactor of fumaronitrile was followed. After operation of the system for 8 h at a flow rate 45 mL h−1 and at 60 °C, the overall conversion was 89%, showing a good stability of the developed process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Livage J (1997) Curr Opin Solid State Mater Sci 2:132

    Article  CAS  Google Scholar 

  2. Sanchez C, Soler-Illia A, Ribot F, Grosso D (2003) R Chimie 6:1131

    Article  CAS  Google Scholar 

  3. Cornelius C, Marand E (2002) J Membrane Sci 202:97

    Article  CAS  Google Scholar 

  4. Karakasidis T, Charitidis C (2006) Mater Sci Eng C 264:1082

    Google Scholar 

  5. Moreau J, Wong M, Man C (1998) Coordin Chem Rev 178–180:1073

    Article  Google Scholar 

  6. Livage J, Ganguli D (2001) Sol Energy Mater Sol Cells 68:365

    Article  CAS  Google Scholar 

  7. Bounor-Legare V, Angelloz C, Blanc P, Cassagnau P, Michel A (2004) Polymer 45:1485

    Article  CAS  Google Scholar 

  8. Smitha S, Mukundan P, Krishna P et al (2007) Mater Chem Phys 103:318

    Article  CAS  Google Scholar 

  9. Chena H, Brooka M, Sheardown H (2004) Biomaterials 25:2273

    Article  CAS  Google Scholar 

  10. Zhao Q, Chen W, Zhu Q (2004) J Non-Cryst Solids 343:163

    Article  CAS  Google Scholar 

  11. Stanley N (1990) Food gels. Elsevier Applied Science, London, p 79

    Google Scholar 

  12. Therkelsen G (1993) Ind. Gums: polysaccharides and their derivatives. Acad. Press, San Diego, p 145

    Google Scholar 

  13. Piculell L (1995) Food polysaccharides and their applications. Marcel Dekker, New York, p 205

    Google Scholar 

  14. Nijenhuis K (1997) Adv Polym Sci 130:1

    Article  Google Scholar 

  15. Gill I, Ballesteros A (1998) J Am Chem Soc 120:8587

    Article  CAS  Google Scholar 

  16. Gill I, Ballesteros A (2000) Trends Biotechnol 18:282

    Article  CAS  Google Scholar 

  17. Kandimalla V, Tripathi V, Ju H (2006) Crit Rev Anal Chem 36:73

    Article  CAS  Google Scholar 

  18. Podbielska H, Ulatowska-Jarza A (2005) Bull Polish Acad Sci Technical Sci 53:35

    Google Scholar 

  19. Sakai S, Ono T, Ijima H, Kawakami K (2003) J Sol-Gel Sci Technol 28(2):267

    Article  CAS  Google Scholar 

  20. Shchipunov Y (2003) J Colloid Interf Sci 268:68

    Article  CAS  Google Scholar 

  21. Toubal M, Nongaillard B, Radziszewski E et al (2003) J Food Eng 58:1

    Article  Google Scholar 

  22. Avnir D, Coradin T, Lev O, Livage J (2006) J Mater Chem 16:1013

    Article  CAS  Google Scholar 

  23. Soltman U, Raff J, Selenska-Pobell S (2003) J Sol–Gel Sci Technol 26:1209

    Article  Google Scholar 

  24. Castelvetro V, Vita C (2004) Adv Coll Interface Sci 108–109:167

    Article  CAS  Google Scholar 

  25. Graham D, Pereira R, Barfield D, Cowan D (2000) Enzyme and Microbial Technology 26:368

    Article  CAS  Google Scholar 

  26. Nassif N, Bouvet O, Rager M, Roux C, Coradin T, Livage J (2002) Nat Mater 1:42

    Article  CAS  Google Scholar 

  27. Shchipunov Y, Karpenko T, Krekoten A (2005) Compos Interfaces 11(8):587

    Article  CAS  Google Scholar 

  28. Gill I, Ballesteros A (2000) TIBTECH 18:282

    CAS  Google Scholar 

  29. Schiraldi C, Martino A, Costabile T et al (2004) Enzyme Microb Tech 34:415

    Article  CAS  Google Scholar 

  30. Soares A, Murto M, Guieysse B, Mattiasson B (2006) Appl Microbiol Biotechnol 69:597

    Article  CAS  Google Scholar 

  31. Cantarella M, Cantarella L, Callifuoko A (2006) J Ind Microbiol Biotechnol 33:208

    Article  CAS  Google Scholar 

  32. Martinkova L, Kren V (2002) Biocatal Biotransform 2:73

    Article  CAS  Google Scholar 

  33. Takagi M, Shiroaze J, Oishi K, Yamamoto K, Yoshida N, Fujimatsu I (1994) J Ferment Bioeng 78:191

    Article  CAS  Google Scholar 

  34. Vekova J, Pavlu L, Vosahlo J, Gabriel J (1995) Int Biodeterior Biodegrad 37:248

    Article  Google Scholar 

  35. Bauer R, Layh N, Syldatk C, Willets A (1996) Biotechnol Lett 18(3):343

    Article  CAS  Google Scholar 

  36. Chapatwala K, Babu G, Armstead E, Wolfram J (1995) Appl Biochem Biotechnol 51:717

    Article  Google Scholar 

  37. Samuneva B, Kadiyska E, Djambaski P et al (2002) Glass Sci Tech 75(C2):434

  38. Chernev G, Samuneva B, Djambaski P, Salvado I, Fernandes M, Kabaivanova L (2005) Glass Sci Tech 179

  39. Chernev G, Samuneva B, Djambaski P, Salvado I, Fernandes M (2006) CEJC 4(1):81

  40. Kabaivanova L, Dobreva E, Emanuilova E, Chernev G, Samuneva B, Salvado I (2006) Minerva Biotechnol 18(1):23

    Google Scholar 

  41. Samuneva B, Djambaski P, Kashchieva E, Chernev G, Kabaivanova L et al (2008) J Non-Cryst Solids 354:733

    Article  CAS  Google Scholar 

  42. Emanuilova L, Kabaivanova E, Chernev G, Samuneva B, Djambaski P, Salvado I (2007) Minerva Biotechnol 19:733

    Google Scholar 

  43. Fawcett J, Scott J (1960) J Clin Path 13:156

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial support from the Bulgarian National Science Fund, NT-2-01, NT-2-02, 2005 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Samuneva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samuneva, B., Kabaivanova, L., Chernev, G. et al. Sol–gel synthesis and structure of silica hybrid materials. J Sol-Gel Sci Technol 48, 73–79 (2008). https://doi.org/10.1007/s10971-008-1799-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1799-8

Keywords

Navigation