Skip to main content
Log in

Sol–gel derived mesoporous bioactive glass fibers as tissue-engineering scaffolds

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous bioactive glass (MBG) fibers have been synthesized using the combination of a sol–gel process and a high velocity spray procedure by carefully controlling the sol composition, acidity and water content. A three-dimensional (3D) macro-structure with ∼50–100 μm interconnected macropores is formed in the spraying process. The MBG fibers possess well-ordered hexagonal mesostructure and excellent in vitro bioactivities. Sprague–Dawley (SD) rat osteoblasts have been cultured on MBG fibers. It is found that the MBG fibers have good cell biocompatibility and the 3D macro-structure is beneficial for cell attachment. It is anticipated that MBG fibers with controlled mesostructure and excellent in vitro bioactivity are good candidates for future tissue-engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) J Biomed Mater Res 2:117

    Article  Google Scholar 

  2. Hench LL (1991) J Am Ceram Soc 74:1487

    Article  CAS  Google Scholar 

  3. Hench LL, Polak JM (2002) Science 295:1014

    Article  CAS  Google Scholar 

  4. Vallet-Regi M, Ragel CV, Salinas AJ (2003) Eur J Inorg Chem 1029

  5. Hatcher BM, Seegert CA, Brennan AB (2003) J Biomed Mater Res Part A 66A:840

    Article  CAS  Google Scholar 

  6. Clupper DC, Gough JE, Hall MM, Clare AG, LaCourse WC, Hench LL (2003) J Biomed Mater Res Part A 67A:285

    Article  CAS  Google Scholar 

  7. De Diego MA, Coleman NJ, Hench LL (2000) J Biomed Mater Res 53:199

    Article  Google Scholar 

  8. Marcolongo M, Ducheyne P, LaCourse WC (1997) J Biomed Mater Res 37:440

    Article  CAS  Google Scholar 

  9. Kim HW, Kim HE, Knowles JC (2006) Adv Funct Mater 16:1529

    Article  Google Scholar 

  10. Peltola T, Jokinen M, Veittola S, Rahiala H, Yli-Urpo A (2001) Biomaterials 22:589

    Article  CAS  Google Scholar 

  11. Domingues RZ, Clark AE, Brennan AB (2001) J Biomed Mater Res 55:468

    Article  CAS  Google Scholar 

  12. Orefice RL, Hench LL, Clark AE, Brennan AB (2001) J Biomed Mater Res 55:460

    Article  CAS  Google Scholar 

  13. Andrade AL, Valerio P, Goes AM, Leite MD, Domingues RZ (2006) J Non-Cryst Solids 352:3508

    Article  CAS  Google Scholar 

  14. Yan XX, Yu CZ, Zhou XF, Tang JW, Zhao DY (2004) Angew Chem Int Ed 43:5980

    Article  CAS  Google Scholar 

  15. Yan XX, Deng HX, Huang XH, Lu GQ, Qiao SZ, Zhao DY, Yu CZ (2005) J Non-Cryst Solids 351:3209

    Article  CAS  Google Scholar 

  16. Yan XX, Huang XH, Yu CZ, Deng HX, Wang Y, Zhang ZD, Qiaoc SZ, Lu GQ, Zhao DY (2006) Biomaterials 27:3396

    Article  CAS  Google Scholar 

  17. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) J Biomed Mater Res 24:721

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation of China (20573021, 30571877), Shanghai Science Committee (05DJ14005) and Shanghai Leading Academic Discipline Project (B113), the Ministry of Education of China (20060246010, FANEDD 200423) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengzhong Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, J., Wei, G., Huang, X. et al. Sol–gel derived mesoporous bioactive glass fibers as tissue-engineering scaffolds. J Sol-Gel Sci Technol 45, 115–119 (2008). https://doi.org/10.1007/s10971-007-1668-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1668-x

Keywords

Navigation