Skip to main content
Log in

Sol–gel technology as representative processing for nanomaterials: case studies on the starting solution

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In order to fabricate sol–gel products with desired microstructure in the form of bulk, fiber and coating film, the appropriate selection of the composition of the starting solution is of primary importance. In this paper, the effects of the composition of the starting solution on the reaction in alkoxysilane solutions, the formation of bulk and fiber, and the microstructure of a particular coating film are reviewed, based on our experiences. It is shown in the alkoxysilane and alkylalkoxysilane solutions that, besides hydrolysis and random polymerization, various reactions take place. Among them, the formation of a four-membered ring molecule in dimethyldialkoxysilane solution, formation of a cage-like cubic octamer in an tetraalkoxysilane solution containing, for example, tetramethylammonium ion and stabilization of a solution for polycomponent oxides by the addition of tartaric acid are discussed. It is also shown that the composition of the starting solution suitable for fiber drawing is different from that for the formation of crack-free bulk gels: for the fiber drawing acid catalyst and low water content are required in various oxide systems including silica, while for the bulk silica gels ammonia-catalyzed alkoxysilane solution with dimethylformamide solvent or highly acidic solution works well for bulk silica gel. Finally, it is shown that the control of microstructure of coating films can be realized by selecting the composition of the starting solution. As an example, the change of the acid content of the starting solution produces three different microstructures of polycrystalline, crystal-oriented and amorphous structure in the lithium borate coating film. As another example, the size of precipitated noble metal particles in the coating film is controlled by the water and acid content of the solution. The mechanism of the above phenomena is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fricke J, Emmerling A (1998) J Sol-Gel Sci Tech 13:299

    Article  CAS  Google Scholar 

  2. Roy R (1956) J Am Ceram Soc 39:145

    Article  CAS  Google Scholar 

  3. Schroeder H (1969) In physics of thin films, vol 5. Academic Press, New York, pp 87–141

    Google Scholar 

  4. Dislich H (1971) Angew Chem Int 10:363

    Article  CAS  Google Scholar 

  5. Mazdiyasni KS, Doloff RT, Smith JSII (1969) J Am Ceram Soc 52:523

    Article  CAS  Google Scholar 

  6. Sakka S, Kamiya K, Yamanaka J (1974) Proc Xth Int Congress on glass, vol 13. Ceramic Society of Japan, 44 p

  7. Gottardi V (ed) (1982) J Non-Cryst Solid 48:1–230

    Article  Google Scholar 

  8. Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, San Diego, pp 1–908

    Google Scholar 

  9. Sakka S (ed) (2004) Handbook of Sol–Gel Science and Technology: processing, characterization and application in three volumes. Kluwer Academic Publishers, Norwell

    Google Scholar 

  10. Schmidt H (1984) Mat Res Soc Symp Proc 32:327

    CAS  Google Scholar 

  11. Avnir D, Levy D, Reisfeld R (1984) J Phys Chem 88:5956

    Article  CAS  Google Scholar 

  12. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CFW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    Article  CAS  Google Scholar 

  13. Nakanishi K, Takahashi R, Nagakane T, Kitayama K, Koheiya N, Shibata H, Soga N (2000) J Sol-Gel Sci Tech 17:191

    Article  CAS  Google Scholar 

  14. Sakka S, Tanaka Y, Kokubo T (1986) J Non-Cryst Solids 82:24

    Article  CAS  Google Scholar 

  15. Hasegawa S, Sakka S (1988) J Non-Cryst Solids 100:201

    Article  CAS  Google Scholar 

  16. Hoebbel D, Garzo G, Engelhardt G, Vargha A (1992) Z Anorg Allg Chem 494:31

    Article  Google Scholar 

  17. Hasegawa I, Sakka S (1989) ACS Symposium Series 398. Zeolite Synthesis, pp 140–151

  18. Hasegawa I, Sakka S (1988) Chem Lett 1319

  19. Zhuang HR, Kozuka H, Sakka S (1990) J Mat Sci 25:4762

    Article  CAS  Google Scholar 

  20. Zhuang HR, Kozuka H, Sakka S (1989) Jpn J Appl Phys 28:L1805

    Article  CAS  Google Scholar 

  21. Zhuang HR, Kozuka H, Yoko T, Sakka S (1990) Jpn J Appl Phys 29:L1107

    Article  CAS  Google Scholar 

  22. Sakka S, Kamiya K (1982) J Non-Cryst Solids 48:31

    Article  CAS  Google Scholar 

  23. Sakka S, Kozuka H (1988) J Non-Cryst Solids 100:142

    Article  CAS  Google Scholar 

  24. Maki T, Sakka S (1987) Bull Inst Chem Res Kyoto Univ 65:242

    CAS  Google Scholar 

  25. Sakka S, Kozuka H (1994) Chim Chronica New Ser 23:137

    CAS  Google Scholar 

  26. Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, San Diego, pp 453–513

    Google Scholar 

  27. Zarzycki J, Prassas M, Phalippou J (1982) J Mat Sci 17:3371

    Article  CAS  Google Scholar 

  28. Yamane M, Kojima T (1980) J Non-Cryst Solids 44:181

    Article  Google Scholar 

  29. Adachi T, Sakka S, Okada M (1987) J Ceram Soc Japan 95:970

    CAS  Google Scholar 

  30. Adachi T, Sakka S (1988) J Non-Cryst Solids 99:118

    Article  CAS  Google Scholar 

  31. Sakka S, Adachi T (1990) J Mat Sci 25:3408

    Article  CAS  Google Scholar 

  32. Trevor DJ (2004) In: Sakka S (ed) Handbook of sol–gel science and technology: processing, characterization and application, vol. 3, chapter 2. Kluwer Academic Publishers, Norwell, USA

    Google Scholar 

  33. Sakka S, Kozuka H, Kim S (1988) In: Mackenzie JD, Ulrich DR (eds) Ultrastructure processing of advanced ceramics, John Wiley and Sons, pp 159–171

  34. Kozuka H, Yamaguchi J, Sakka S (1989) Chem Mater 1:398

    Article  CAS  Google Scholar 

  35. Kozuka H, Yamaguchi J, Sakka S (1989) In: Proc of the 6th Japan–Korea seminar on ceramics, Osaka, Dec. 6–7, pp 131–134

  36. Kozuka H, Yamaguchi J, Sakka S (1989) In: Proc of International Congress on Glass Leningrad 1988, vol. 2a, pp 32–37

  37. Tanaka N, Kobayashi H, Nakanishi K, Minakuchi H, Ishizuka N (2001) Anal Chem 73:420A

    Article  CAS  Google Scholar 

  38. Yamashita H, Yoko T, Sakka S (1990) J Mater Sci Lett 9:796

    Article  CAS  Google Scholar 

  39. Yamashita H, Yoko T, Sakka S (1990) Thin Solid Film 189:L5

    Article  Google Scholar 

  40. Yamashita H, Yoko T, Sakka S (1991) J Am Ceram Soc 74:1668

    Article  CAS  Google Scholar 

  41. Sakka S (1998) J Sol-Gel Sci 13:701

    Article  CAS  Google Scholar 

  42. Kozuka H, Sakka S (1993) Chem Mater 5:222

    Article  CAS  Google Scholar 

  43. Innocenzi P, Kozuka H, Sakka S (1994) J Sol-Gel Sci Tech 1:305

    Article  CAS  Google Scholar 

  44. Nicol L, Boissiere C, Grosso D, Alida Q, Sanchez C (2005) J Mater Chem 15:3598

    Article  CAS  Google Scholar 

  45. Shimojima A, Kuroda K (2006) Chem Rec 6:53

    Article  CAS  Google Scholar 

  46. Edler KJ (2004) In: Sakka S (ed) Handbook of sol–gel science and technology, processing, characterization and application, vol. 1, chapter 24. Kluwer Academic Publishers, Norwell, USA

    Google Scholar 

  47. Nakanishi K (2004) In: Sakka S (ed) Handbook of sol-gel science and technology, processing, characterization and application, vol 1, chapter 23. Kluwer Academic Publishers, Norwell, USA

    Google Scholar 

  48. Xie D, Zhang Z, Ren T, Liu L (2007) J Sol-Gel Sci Tech 42:271

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumio Sakka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakka, S. Sol–gel technology as representative processing for nanomaterials: case studies on the starting solution. J Sol-Gel Sci Technol 46, 241–249 (2008). https://doi.org/10.1007/s10971-007-1651-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1651-6

Keywords

Navigation