Skip to main content
Log in

Effect of Processing Temperature on Gelation and Physical Properties of Low Density TEOS Based Silica Aerogels

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present paper the experimental results of the effect of sol-gel processing temperature on the physical properties of the TEOS based silica aerogels are reported and discussed. The aerogels were produced by the two step sol-gel process at various temperatures in the range of 26–70∘;C followed by supercritical drying using methanol solvent extraction. A remarkable reduction in the gelation time was observed from three and a half days at room temperature to a mere 18 hours at 50∘;C. The best quality aerogels in terms of low density and high optical transmission were obtained for 6 hours hydrolysis time. The aerogels were characterized by the measurements of bulk density, volume shrinkage, porosity, refractive index and optical transmission. Monolithic aerogels with ultra low density (∼0.018 g/cm3), extremely high porosity (∼99%) and optimum optical transmission at 700 nm (∼75%) were obtained for the molar ratio of TEOS:MeOH:acidic water:basic water at 1:99:10.42:14.58 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Tillotson and L.W. Hrubesh, J. Non-Cryst. Solids 145, 44 (1992).

    Article  CAS  Google Scholar 

  2. J. Fricke and A. Emmerling, Struct. Bonding 77, 27 (1992).

    Google Scholar 

  3. C.A.M. Mulder and J.G. Van Leirop, in Aerogels, edited by J. Fricke (Springer-Verlag, Berlin, 1986) p. 68.

    Google Scholar 

  4. P.J. Carlson, K.E. Johansson, J.K. Norrloy, O. Pingot, S. Tavernier, F. Van den Bogert, and L. van Luncker, Nucl. Instrum. Meth. 160, (1979) 407.

    Article  CAS  Google Scholar 

  5. A.R. Bazykaev, A.F. Danilyuk, S.F. Ganzbur, T.A. Gorodtskaya, G.M. Kolachev, E.A. Kravchenko, V.I. Mikerov, G.D. Minakov, A.P. Onuchin, A.G. Shamov, and V.A. Tayursky, J.Non-Cryst. Solids 225, 381 (1998).

    Article  Google Scholar 

  6. T. Sumiyoshi, I. Adachi, R. Enamoto, T. Ijima, R. Suda, M. Yokoyama, and H. Yokogava, J. Non-Cryst. Solids 225, 369 (1998).

    Article  CAS  Google Scholar 

  7. T.M. Tillotson, L.W. Hrubesh, R.L. Simpon, R.S. Lee, R.W. Swansiger, and L.R. Simpon, J. Non-Cryst. Solids 225, 358 (1998).

    Article  CAS  Google Scholar 

  8. K. Kim, K.Y. Jang, and R.S. Upadhey, J. Amer. Ceram. Soc. 78, 1987 (1991).

    Article  Google Scholar 

  9. R. Caps and J. Fricke, Sol. Energy 26, 361 (1986).

    Article  Google Scholar 

  10. D. Haranath, P.B. Wagh, G.M. Pajonk, and A.V. Rao, Mater. Res. Bull. 32(8), 1079 (1997).

    Article  CAS  Google Scholar 

  11. G.M. Pajonk, Appl. Catal. 72, 217 (1991).

    Article  CAS  Google Scholar 

  12. G.M. Pajonk, and S.J. Teichner, in Proceedings of the first International Symposium on Aerogels, edited by J. Fricke (Wurzburg, Germany, 23–25, September 1985) p. 193.

  13. D.M. Smith, A. Maskara, and U. Boes, J. Non-Cryst. Solids 225, 254 (1998).

    Article  CAS  Google Scholar 

  14. J. Gross and J. Fricke, J. Non-Cryst. Solids 145, 217 (1992).

    Article  CAS  Google Scholar 

  15. L. Kocon, F. Despetis, and J. Phalippou, J. Non-Cryst. Solids 225, 96 (1998).

    Article  CAS  Google Scholar 

  16. C.J. Brinker, K.D. Keefer, D.W. Schaefer, and C.S. Ashley, J. Non-Cryst. Solids 48, 47 (1982).

    Article  CAS  Google Scholar 

  17. C.J. Brinker, K.D. Keefer, D.W. Schaefer, R.A. Assink, B.D. Kay, and C.S. Ashley, J. Non-Cryst. Solids 63, 45 (1984).

    Article  CAS  Google Scholar 

  18. J.G. van Leirop, A. Huizing, W.C.P.M. Meerman, and C.A.M. Mulder, J. Non-Cryst. Solids 82, 265 (1986).

    Article  Google Scholar 

  19. A.H. Boonstra and C.A.M. Mulder, J. Non-Cryst. Solids 105, 201 (1998) (proceeding article).

    Article  Google Scholar 

  20. A.V. Rao, G.M. Pajonk, N.N. Parvathy, E. Elaoui, and Y.A. Attia (Eds.), Sol-Gel Processing and Application (Plenum, New York, 1994) p. 237.

    Google Scholar 

  21. A.V. Rao and N.N. Parvathy, Indian J. Technol. 31, 636 (1993).

    CAS  Google Scholar 

  22. A.V. Rao, and S.D. Bhagat, Solid State Sci. 6, 945 (2004).

    Article  CAS  Google Scholar 

  23. M.W. Colby, A. Osaka, and J.D. Mackenzie, J. Non-Cryst. Solids 82, 37 (1986).

    Article  CAS  Google Scholar 

  24. A.H. Boonstra and T.N.M. Bernards, J. Non-Cryst. Solids 105, 207 (1998).

    Article  Google Scholar 

  25. M.F. Bechtold, W. Mahler, and R.A. Schunn, J. Polym. Sci.: Polym. Chem. Ed. 18, 2823 (1980).

    Article  CAS  Google Scholar 

  26. G.W. Scherer, J. Non-Cryst. Solids 145, 33 (1992).

    Article  CAS  Google Scholar 

  27. A.V. Rao, P.B.Wagh, G.M. Pajonk, and D. Haranath, Mat. Sci. Tech. 14, 236 (1998).

    CAS  Google Scholar 

  28. A.V. Rao, G.M. Pajonk, D. Haranath, and P.B. Wagh, J. Mater. Synt. Proc. 6(1), 1998.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaraja D Hegde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegde, N.D., Rao, A.V. Effect of Processing Temperature on Gelation and Physical Properties of Low Density TEOS Based Silica Aerogels. J Sol-Gel Sci Technol 38, 55–61 (2006). https://doi.org/10.1007/s10971-006-5348-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-5348-z

Keywords

Navigation