Skip to main content
Log in

Sol–Gel SiO2-ZrO2 Coatings for Optical Applications

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

SiO2-ZrO2 based nanostructured multilayers films have been prepared by sol–gel processing from metallorganic precursors by low temperature inorganic polymerization reactions. Simultaneous gelation of both precursors was realized. Homogeneous and transparent films were obtained at room temperature by dip- and spin-coating on glass and silicon wafer substrates. Samples with successively deposited layers (1–3 layers) and successive thermal treatments have been also studied. Each deposited layer was thermally treated for 1 h at 300°C. The coatings were characterized by XRD, spectroellipsometry (SE), UV-VIS spectroscopy and AFM methods. The influence of substrates, number of coatings and number of thermal treatments on the optical and structural properties of the films was established. The thickness of three deposited SiO2-ZrO2 layers is about 496 nm on glass substrates and 413 nm on the silicon wafer substrate. The films deposited on glass are more porous than those deposited on silicon. The properties of optical waveguide prepared from SiO2-ZrO2 layers on silicon substrates will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ebener and W. Winter, J. Eur. Ceram. Soc. 16, 1179 (1996).

    Google Scholar 

  2. W.H. Fan, Y.Xu J.H.Sun D.Wu Y.H.Sun Mol. Crys. Liq. Crys. Sci. Tech. Sec. A—Mol. Crys. Liq. Crys. 337, 497 (1999).

    Google Scholar 

  3. Q. Zhang, J.Shen J.Wang G.Wu L.Chen Inter. J. Inorg. Mater. 2, 319 (2000).

    Google Scholar 

  4. T.A. Canada and Z.L.Xue Analytical Chem. 74, 6073 (2002).

    Google Scholar 

  5. T. Lopez, M. Asomoza, R.Gomez Thermochimica Acta. 223, 233 (1993).

    Google Scholar 

  6. M. Andrianainarivelo, R. Corriu, D. Leclercq, P.H.Mutin A. Vioux, J.Mater. Chem. 6, 1165 (1996).

    Google Scholar 

  7. L. Delattre and F.Babonneau Chem. Mater. 9, 2385 (1997).

    Google Scholar 

  8. Y. Tsurita and K.Wada Bulletin of the Chem. Soc. Japan 70, 283 (1997).

    Google Scholar 

  9. F. Garbassi, L.Balducci R.Ungarelli J. Non-Cryst. Solids 223, 190 (1998).

    Google Scholar 

  10. T. Hasegawa, K.Hibino K.Takei Applied Organometallic Chem. 13, 549 (1999).

    Google Scholar 

  11. H. Yamashita, Bunseki Kagaku. 48, 205 (1999).

    Google Scholar 

  12. H. Yamashita, K.Nozaki K.Toshinari T.Mima T.Maekawa J. Cer. Soc. Japan 106, 1184 (1998).

    Google Scholar 

  13. R. Takahashi, K.Nakanishi N.Soga J.Cer. Soc. Japan 106, 772 (1998).

    Google Scholar 

  14. F. Delmonte, W.Larsen J.D.Mackenzie J.Amer. Cer. Soc. 83, 628 (2000).

    Google Scholar 

  15. R. Takahashi, S.Sato T.Sodesawa K.Suzuki M.Tafu K.Nakanishi N.Soga J.Amer. Cer. Soc. 84, 1968 (2001).

    Google Scholar 

  16. D.H. Agular, L.C. Torresgonzales L.M. Torresmartinez T. Lopez P. Quintana J. Solid State Chem. 158, 349 (2001).

    Google Scholar 

  17. K. Osada and T. Kato, Kagaku Kogaku Ronbunshu. 28, 67 (2002).

    Google Scholar 

  18. C. Guizard, A. Ayral A. Julbe Desalination 147, 275 (2002).

    Google Scholar 

  19. R.A. Shalliker, L. Rintoul G.K.Douglas S.C.Russell J.Mater. Sci. 32, 2949 (1997).

    Google Scholar 

  20. R. Gomez, T.Lopez F.Tzompantzi E.Garciafigueroa D.W.Acosta O.Novaro Langmuir 13, 970 (1997).

    Google Scholar 

  21. R. Gomez, F.Tzompantzi T.Lopez O.Novaro React. Kinet. Catal. Lett. 53, 245 (1994).

    Google Scholar 

  22. J.B. Miller and E.I.Ko J.Catalysis 159, 58(1996).

    Google Scholar 

  23. T. Lopez, F.Tzompantzi J.Navarrete R.Gomez J.L.Boldu E.Munoz O.Navaro J.Catalysis 181, 285 (1999).

    Google Scholar 

  24. Z.Q. Zhan and H.C.Zeng J.Mater. Chem. 9, 2647 (1999).

    Google Scholar 

  25. Z.Q. Zhan and H.C.Zeng J. Non-Cryst. Solids 243, 26 (1999).

    Google Scholar 

  26. J.A. Anderson, C.Tergusson I.Rodriguezramos A.Guerreromiz J.Catalysis 192, 344 (2000).

    Google Scholar 

  27. C. Flego, L.Carluccio C.Rizzo C.Perego Catal. Commun. 2, 43 (2001).

    Google Scholar 

  28. D.A.G. Bruggeman, Ann. Phys. 24, 6362 (1935).

    Google Scholar 

  29. S.H. Wemple and M.Di. Domenico, Phys. Rev. B3, 1338 (1971).

    Google Scholar 

  30. B. Yoldas, Appl. Optics 21, 2960 (1982).

    Google Scholar 

  31. M. Zaharescu, C.Parlog M.Crisan M.Gartner A.Vasilescu J. Non-Cryst. Solids 160, 162 (1993).

    Google Scholar 

  32. C. Parlog, M.Gartner P.Osiceanu V.Teodorescu F.Moise A.Ianculescu Ceramics International 22, 95 (1996).

    Google Scholar 

  33. M. Crisan, M.Gartner A.Szatvanyi M.Zaharescu Rev. Roum. Chimie 47, 177 (2002).

    Google Scholar 

  34. M. Crisan, M. Gartner, L. Predoana, D. Crisan, R. Scurtu, R. Gavrila, and M. Zaharescu, Eight ECERS, Conference &Exhibition of the European Ceramic Society, Istanbul, Turkey, 2003.

    Google Scholar 

  35. M. Crisan, M. Gartner, D. Cristea, M. Zaharescu, L. Predoana, E. Manea, and M. Cãldãraru, Proc. of the 10th IEEE Int. Symposium on Electron Devices for Microwave and Optoelectronic Applications (EDMO 2002) (Manchester, UK, 2002), p. 205.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Crisan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crisan, M., Gartner, M., Predoana, L. et al. Sol–Gel SiO2-ZrO2 Coatings for Optical Applications. J Sol-Gel Sci Technol 32, 167–172 (2004). https://doi.org/10.1007/s10971-004-5783-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-004-5783-7

Keywords

Navigation